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ABSTRACT
We report new far-infrared spectra of (HF)2 obtainedbyhigh resolution long-path Fourier Transform-
Infrared (FTIR) spectroscopy. The origins of the two tunneling components of the Ka = 0 ← 1
subband of the in-plane symmetric bending fundamental ν3 were found to be at 450.4546 cm−1
(�t : A+ ← B+) and at 451.4583 cm−1 (B+ ← A+), and of the Ka = 0← 1 subband of the out-of-
plane bending fundamental ν6 at 382.0802 cm−1 (A+ ← A+) and at 383.2245 cm−1 (B+ ← B+).
The Ka = 0 term values with respect to the ground state �t = A+ term are 486.9442 cm−1 for the
A+ and 486.8834 cm−1 for the B+ tunneling levels of ν3. They are 417.5053 cm−1 for the A− and
419.7140 cm−1 for the B− vibration-tunneling sublevels of ν6. The results are discussed in relation to
full-dimensional quantum dynamics and predictions based on recent ab initio calculations and our
empirically refined potential energy hypersurfaces.
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1. Introduction

In contrast to early theoretical analyses of high-resolution
spectra of polyatomic molecules and clusters based on
perturbation theory and approximate vibration rotation
Hamiltonians, recent progress has focused on quasi-
exact vibration rotation calculations on full-dimensional
potential hypersurfaces (see for instance the reviews in
[1]). Attila Császár has been a pioneer in the develop-
ment of exact numerical methods and computational
approaches towards such molecular rovibrational eigen-
state calculations [2,3]. In particular the highly non-
rigid hydrogen bonded clusters are candidates for such
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approaches and an early example for vibration-tunneling
quantum dynamics on full-dimensional potential hyper-
surfaces is the prototypical dimer HFHF [4]. Some of the
historical development can be found summarized in the
recent Refs. [5,6].

Indeed, the hydrogen bonded clusters (HF)n can be
considered to be the simplest prototypes for studies of
multidimensional potential hypersurfaces and the quan-
tum dynamics of hydrogen bond tunneling rearrange-
ment and hydrogen bond formation and dissociation
processes in hydrogen-bonded clusters in general [7–9].
Such clusters in increasing size (with n = 2, 3, 4, . . . ,
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up to very large nanoclusters [10–14]) can serve as a
role model for the transition from molecules in the
gas phase to liquids and solids also for more complex
hydrogen-bonded systems such as water, alcohols and
even biomolecular systems such as proteins and DNA
[15–21]. They can also serve in relation to effects such
as quasiadiabatic channel above barrier tunneling to an
understanding of some of the most fundamental aspects
of tunneling spectra [5,22].

Although the hydrogen bond in the HF dimer is rel-
atively strong, with electronic dissociation energy cor-
responding to De = 1597 cm−1 by theory [4,7,23] and
Do = 1062 cm−1 (�H�0 = 12.70 kJ mol−1) by exper-
iment [24,25], this molecule is very flexible and the
description of its dynamics is quite complicated. Con-
sidering its degrees of freedom, we may distinguish
between the so-called intramolecular vibrations ν1 (free
HF stretching) and ν2 (bonded HF stretching), and the
intermolecular modes ν3 (in-plane symmetric bending
or in-plane libration or ‘antigeared’ bend or conrota-
tory bend), ν4 (FF stretch or van der Waals stretch), ν5
(in-plane antisymmetric bend or ‘geared’ bend or hydro-
gen bond exchange disrotatory in-plane vibration) and
ν6 (out-of-plane bend or out-of-plane libration or out-
of-plane torsion). The intermolecular fundamentals are
expected below about 600 cm−1, i.e. in the far infrared
region. The far-infrared spectrum therefore represents a
particularly rich source of information on structure and
dynamics of this molecule. Early investigations of the far-
infrared spectrum could identify the Ka = 1 ← 0 [26]
and 2← 1 [27] subbands of the ν6 fundamental as well
as excited Ka levels of the vibrational ground state ν0
[27,28], ν5 [29], and an approximate value of ν4 [4].Many
structures in the far-infrared spectrum remained unex-
plained. In particular, the band centers (Ka = 0 levels)
of the in-plane symmetric bending fundamental ν3 and
of the out-of-plane bending fundamental ν6 were not
experimentally assigned and analyzed in earlier work.

This lack of direct evidence motivated us to reinves-
tigate the far-infrared region of the spectrum by high
resolution FTIR spectroscopy under improved condi-
tions using a new long path absorption cell.We report the
detailed analysis of two subbands centered near 380 and
450 cm−1, which could be assigned to the Ka = 0← 1
subbands of the fundamentals ν6 and ν3, respectively.
The results of the present investigation are particularly
timely in view of recent efforts of generating improved ab
initio potential energy hypersurfaces [7,23,29–31]. The
interaction potential of the two HF molecules in (HF)2
has been repeatedly studied already from the early days
of accurate ab initio quantum chemistry [32–35]. A large
set of ab initio potential energies for various structures
calculated by Kofranek, Lischka and Karpfen [36] was

used as starting point for developing fully six dimen-
sional analytical potential hypersurface representations
by Quack and Suhm [4,37] (labeled QSKLK, SQSBDE
etc., where the S in front indicates potentials which were
semi-empirically adjusted to selected experimental data
such as rotational constants B or the dissociation energy
corresponding to De). These surfaces were used for full-
dimensional eigenstate calculations by Quantum Monte
Carlo techniques [4] as well as vibrational variational
approaches [38,39]. In comparison with experiment it
was noted that ab initio calculations needed improve-
ment and a substantial effort led to new ab initio cal-
culations using an MP2-R12 approach to generate accu-
rate potential energy and dipole hypersurfaces [23,29].
At the same time, new high level CCSD(T) calcula-
tions were carried out for selected structures and prop-
erties [40,41]. It was realised that for some aspects of
the empirical adjustment of the hypersurfaces the accu-
rate spectroscopic basis was still lacking [4,23]. However,
we have recently shown that the empirically adjusted
potential hypersurface SO-3 from [7,29] provides a very
satisfactory description of the HF-stretching overtone
polyads including the tunneling and symmetry substruc-
tures [6,42]. Nevertheless, an accurate empirical basis for
an adjustment notably for the properties related to the
mode ν3 is lacking and the present work intends to fill
this gap.

2. Experimental

The high-resolution spectra have been measured on
our BOMEM DA002 spectrometer in the 125–680 cm−1
range (see Refs. [26–28,43,44]). We used a Globar light
source, a 3µ Mylar beam splitter and a liquid Helium
cooled Si bolometer which was equipped with a 12.5
µm cut-on long wave pass filter. The sample cell had
been purchased from Portmann Instruments AG, Switzer-
land. It is a coolable long-path cell with internal White
optics. The base length is 1.37 m and the path length
can be varied in steps of about 10 m. The cooling of the
cell can be performed by passing a refrigerant through a
cooling-jacket. All materials of the cell have been care-
fully selected to be resistant to HF. The cell body is
made of stainless steel and the White optics inside the
cell consists of gold coated CaF2 mirrors. The cell was
equipped with polyethylene windows and was cooled to
243 K by passing cryogenic liquid from a thermostat
(Lauda Kryomat RUK90, Instrumentengesellschaft AG,
Zürich). The optical path length was set to 30 m and
the HF pressure was chosen in the 15–20 mbar range.
Under these conditions the spectra taken at a resolution
of 0.01 cm−1 are limited by pressure broadening. In order
to improve the signal-to-noise ratio, we co-added 100
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scans in a typical measurement. The wavenumber cali-
bration was done with in situ H2O lines (see [44–46]).
The estimated wavenumber uncertainty, given by the
root-mean-square (rms) deviation of 57 calibration lines
in the range 200–530 cm−1 with respect to a linear cali-
bration function, was drms = 1.2× 10−3 cm−1.

3. Term formulae and selection rules

The dimer (HF-HF) is a slightly bent, near symmet-
ric top. As it is fairly flexible, each sublevel of a given
symmetric top quantum number K ( = Ka) is best char-
acterised by an individual set of spectroscopic parameters
[26]. For the rotational analysis of vibration-tunnelingK-
subbands involvingKa up to 2 the following term formula
(1) proved successful in previous studies [26,27,28,43,47]
and will be used in the present analyses (see in particular
[47] also for the symmetry selection rules):

E(±)vK
hc
= ṽvK +

(
B̄vK ± 1

4
δK1bvK

)
J(J + 1)

− [DvK ∓ (δK1 + δK2)dvK]J2(J + 1)2

+ (HvK ± δK2hvK)J3(J + 1)3 (1)

The constant term ṽvK describes a hypothetical vibration-
tunneling level for a fixed K, and J extrapolated to
zero. B̄vK = (BvK+CvK)

2 is an average rotational constant,
DvK and HvK are centrifugal distortion constants, and
bvK = (BvK − CvK), dvK and hvK are asymmetry split-
ting constants of different order. The δKi (i = 1,2) are
the conventional Kronecker delta. The upper signs in
the above equation apply to levels with Ka+Kc = J, the
lower to Ka+Kc = J+ 1, where Ka and Kc are the usual
asymmetric top quantum numbers [48] (see also Refs.
[26–28,43,47] for further explanation of the origin and
symbols used in Equation (1)).

Themolecular symmetry group of (HF)2 and its impli-
cations on the classification of the level structure and the
electric dipole selection rules was subject of early stud-
ies by Dyke, Howard and Klemperer [49] and by Hougen
and Ohashi [50] and a detailed discussion in relation to
the analysis of the far-infrared spectra has been given
in Refs. [26–28,47]. We follow here Refs. [26,47] and
the notation defined in [51] and give for definiteness
the relevant character tables in Table 1 (see also Refs.
[5,6,52]). There is experimental and theoretical evidence
for the trans tunneling path to be dominant with a C2h
saddle point or transition state structure and low barrier
of about 350 cm−1 [7,28]. The group theoretical scheme
for this path is therefore adequate and the correspond-
ing approximate point group notation for C2h has been
frequently used [50], which we give here in parenthe-
ses. It should be noted, however, that the classification

Table 1. Character tables for the symmetry groups of the HF
dimer (H(1)F(2) H(3)F(4)) [5,6,26].

(a) Character table and species of the molecular symmetry group MS4
of (HF)2. The approximate point group (C2h) species notation is given
in parentheses (see also Refs. [52,54,55] and references cited therein for
conventions and notation).

Species E E∗ (ab) (13)(24) (ab)∗ (13)(24)∗ �(MS4)↑ S∗2,2
A+ (Ag) 1 1 1 1 A +

1 + A +
2

A− (Au) 1 −1 1 −1 A -
1 + A -

2
B+ (Bu) 1 1 −1 −1 B +

1 + B +
2

B− (Bg) 1 −1 −1 1 B -
1 + B -

2

(b) Character table and symmetry species for S2,2.

Species E (13) (24) (13)(24) (S2,2)↓MS2

A×A ≡ A1 1 1 1 1 A
B× B ≡ A2 1 −1 −1 1 A
B×A ≡ B1 1 −1 1 −1 B
A× B ≡ B2 1 1 −1 −1 B

of eigenstates with symmetry labels from the molecular
symmetry group MS4 of permutation-inversion opera-
tions is independent of any assumption of the tunnel-
ing path, as tunneling is in any case multidimensional.
For symmetry considerations we can assume the total
(rovibrational-tunneling-nuclear spin) wavefunctions to
be given by product-wavefunctions � total = ψ rtv ψn
withψ rtv = ψ r ψ t ψv. The ‘tunnelingmode’ is the disro-
tatory in-plane bending vibration ν5, for which a number
of tunneling and K-sublevels were observed and anal-
ysed already in 1990 [53], where also a survey of the low
energy level structure of HFHF is given. The symmetry
of the tunneling wavefunctions, �t , is either A+ or B+,
the symmetry of the vibrational wavefunctions, �v,is A+
for ν2, ν3 and ν4, B+ for ν1 and A− for ν6, and the sym-
metry of the rotational wavefunctions �r is A+ (even Kc)
or B− (odd Kc). The symmetry of the nuclear spin wave-
functions, �n, is eitherA+ or B+ . The allowed combina-
tions are determined by the generalised Pauli principle,
which requires �total = �r �t �v �n = A+ or A−. The
nuclear spin statistical weights gi of �n are gB = 6 and
gA = 10, as the A species are symmetric with respect to
monomer exchange and the B species are antisymmetric.
The superscript indicates parity (‘+’, positive, symmet-
ric with respect to inversion at the origin, or ‘−’, nega-
tive, antisymmetric with respect to inversion). We give
also the induced representation for the full permutation-
inversion group in the last column of Table 1 (see also
[51,52] for an in-depth discussion of the symmetry
aspects).

For allowed electric dipole moment transitions the
following selection rules hold: �J = 0,± 1 and+⇔ −
(change of parity);A⇔A andB⇔B for�n (nuclear spin
symmetry conservation) and therefore for �rtv. Since
(HF)2 is nearly a prolate symmetric top, we have in
addition approximate selection rules for the quantum
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number K ( = Ka):�K = 0, giving rise to parallel bands
(µa transition moment), or�K = ±1, giving rise to per-
pendicular bands (µb or µc transition moment). The
in-plane fundamentals ν1, ν2, ν3 and ν4 give rise to a,
b-hybrid bands (�K = 0,± 1), the out-of-plane funda-
mental ν6 to a type c band (�K = ±1). In the case of
the in-plane fundamentals with A+ symmetry, the upper
and lower tunneling states involvedmust belong to differ-
ent symmetry species A+ and B+ . This is in contrast to
ν6 where the two tunneling sublevels connected by the
transition must belong to the same symmetry species.
Figure 1 illustrates the selection rules for the two sub-
bands the present investigation is concerned with. In the
case of the ν3 subband, the Q-branch transitions start
from the higher component of Kc-doublets, in contrast
to the P– and R-branch transitions which start from the
lower component. For the ν6 subband, the reverse is
true.

4. Results, analysis and assignments

4.1. The Ka = 0← 1 subband of ν6

The line-structure of two Q-branches near 380 cm−1
had been analysed and tentatively assigned in a previ-
ous investigation at our laboratory early on [26]. At that
time, the assignment of the J quantum numbers was not
unambiguous, however, and the corresponding P- and
R-branch transitions had not been identified. The assign-
ment of vibrational-tunneling quantum numbers as well
as of Ka quantum numbers was therefore not uniquely
possible, neither for the lower nor the upper states. Nev-
ertheless, already then the first option of several possible
assignments mentioned was the Ka = 0← 1 transition
in ν6, which we confirm here. However, in 1987 other
optional assignments could not be excluded [26].

The new spectra yield more accurate peak wavenum-
bers and a more extended range of valuable Q-branch
lines. From a plot of wavenumber-differences of adja-
cent Q-branch peaks we established a hypothetical J-
assignment. Predictions based on the SO-3 potential
energy surface [29,56] favour the assignment to the two
tunneling components of theKa = 0← 1 subband of the
ν6 fundamental. Since the spectroscopic constants of the
Ka = 1 ground state levels are very accurately known
[28], we tested this hypothesis by means of combina-
tion differences. Using lower state energies as given by
Equation (1), combination differences for the two tun-
neling components of this ν6 subband can be expressed
as follows:

PR1(J − 1)− PP1(J + 1) = E( + )
01 (J + 1)− E( + )

01 (J − 1)
(2)

Figure 1. Schematic representation of the allowed transitions for
the Ka = 0← 1 subbands of ν3 (a) and ν6 (b). �t and �v refer
to the tunneling and vibrational states involved, and �rtv is the
overall species (‘motional’, rotation-vibration species apart from
nuclear spin symmetry [52]).

PQ1(J) − PP1(J + 1) = E( + )
01 (J + 1) − E( - )01 (J) (3)

PR1(J − 1) − PQ1(J) = E( - )01 (J)− E( + )
01 (J − 1) (4)

We used Equations (3) and (4) to predict the P- and
R-progressions belonging to the tentatively assigned Q-
structure. By this procedure we were able to identify P-
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and R-branch transitions and to definitely identify the
lower state labels. Using the intensity alternation due
to the nuclear spin weights as a further indication, we
could verify the symmetry species of the upper vibra-
tional state to be A−and therefore definitely assign these
subband structures to theA−←A+ and B−← B+ com-
ponents of the Ka = 0← 1 subband of the fundamental
ν6. We determined upper state constants according to
equation (1) by a least squares fit. We omitted critical
data when strong overlapping with neighbouring struc-
tures occurred and limited the input to transitions with
lower state J quantum numbers smaller than 34. The rea-
son for this restriction were systematic deviations of the
residuals for larger J quantum numbers. The adjusted
parameters and details of the statistics of the fit are listed
in Table 2. Table 3 contains a listing of the observed
transition wavenumbers used in the fit as well as the dif-
ference � between observed and calculated values (in
cm−1/10−3). Figure 2 compares experimental and sim-
ulated survey spectra of this subband, and Figure 3 illus-
trates the region of theQ-branch origins on an expanded
scale.

4.2. The Ka = 0← 1 subband of ν3

Theoretical 6D-calculations based on the SO-3 potential
energy surface [57–59] predict the tunneling sublevels of
the symmetric bending vibration ν3 at 483.54 cm−1 (A+
tunneling component) and 486.12 cm−1 (B+). According
to the dipole selection rules, we expect an ab-hybrid band
for this fundamental. The dipole component µb gives
rise to a perpendicular band with a widely spaced and
thereforewell separatedK-structure.Using the calculated
values given above and ground state levels from [28], the
centers of the tunneling components of the K = 0← 1
subband of ν3 are predicted at 447.05 cm−1 (A+ ← B+
component) and at 450.70 cm−1 (B+←A+ component).
The measured spectrum shown in Figure 4 reveals an
accumulation of features in the region around 450 cm−1.
By comparing spacings between neighbouring lines we
were able to identify two Q-branch progressions in this
range. In the following we could assign corresponding
P- and R-progressions by means of combination differ-
ences valid for the case of a Ka = 0← 1 subband of an
A+ fundamental, given by

PR1(J − 1) − PP1(J + 1) = E( - )01 (J + 1)− E( - )01 (J − 1) (5)

PQ1(J) − PP1(J + 1) = E( - )01 (J + 1) − E( + )
01 (J) (6)

PR1(J − 1) − PQ1(J) = E( + )
01 (J) − E( - )01 (J − 1) (7)

and thereby verify the identity of the lower states involved
as well as the assignment of the rotational quantum

Figure 2. The Ka = 0← 1 subbandof ν6 of (HF)2. (a) Experimen-
tal spectrum (pressure = 20mbar, temperature = 243 K, resolu-
tion apodized�ν̃ (FWHM) = 0.01 cm−1), (b) simulated spectrum
and assignments.

Figure 3. Low J part of theQ-branches of the two tunneling com-
ponents of the Ka = 0 ← 1 subband of ν6. (a) Experimental
spectrum, conditions see Figure 2. (b) simulated spectrum and
assignments.

numbers. Furthermore the intensity alternation arising
from nuclear spin statistical weights indicates the upper
vibrational level belong to either the species A+ or B+ .
The predicted values hardly leave any doubt that the
upper vibrational state corresponds to ν3 (A+). The
adjusted upper state constants are collected in Table 2.
Again we excluded data which are problematic due to
overlapping lines and restricted the least-squares fit to
transitions with lower state J quantum numbers smaller
than 34 for the same reasons as discussed above with
the corresponding ν6 subband. The transition wavenum-
bers used in the fit are listed in Table 4. Figure 4 shows
experimental and simulated survey spectra of this sub-
band, together with assignments, and Figure 5 illustrates
a characteristic part of the Q-branch region in more
detail.
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Table 2. Spectroscopic parameters for the Ka = 0← 1 subbands of the fundamentals ν3
and ν6 of (HF)2.

ν3 ν6

�t A+ B+ A+ B+
�tv A+ B+ A− B−
�ν̃0

(a) / cm−1 450.4546(8) 451.4583(6) 382.0802(6) 383.2245(4)
ν̃v0

(b) / cm−1 486.9442 486.8834 417.5053 419.7140
B̄v0 / cm−1 0.208894(10) 0.207288(7) 0.212695(5) 0.213222(4)
Dv0 / 10−6 cm−1 1.435(37) 1.009(18) 2.1990(96) 2.3358(88)
Hv0 / 10−10 cm−1 −11.43(37) −5.48(12) −0.767(56) −0.645(53)
Statistics of the fit:
number of data 45 54 52 63
Jmax 28 31 36 34
drms /10−3 cm−1 1.75 1.74 1.45 1.33
Ground state combination differences(c) :
number of differences 29 33 43 34
drms /10−3 cm−1 1.95 1.93 1.93 1.91

Ground state parameters for Ka = 1 [28]:

�t A+ B+

B̄01 / cm−1 0.217860181 0.217709222
D01 / 10−6 cm−1 1.98814 1.96985
H01 / 10−12 cm−1 −39.27 −40.85
b01 / 10−3 cm−1 3.175940 3.041534
d01 / 10−9 cm−1 −42.591 −36.913

(a)Center of Ka = 0← 1 subband tunneling component;
(b)term value with respect to ground state Ka = 0, A+ term;
(c)statistics of prediction using ground state parameters from Ref. [28].

Figure 4. The Ka = 0← 1 subbandof ν3 of (HF)2. (a) Experimen-
tal spectrum (pressure = 20mbar, temperature = 243 K, resolu-
tion apodized�ν̃ (FWHM) = 0.01 cm−1), (b) simulated spectrum
and assignments.

5. Discussion of the results and comparison
with theory

The analysis of the two Ka = 0← 1 subbands provide
accurate termvalues of both tunneling components of the
fundamentals ν3 and ν6. The fits based on the term for-
mula given by Equation (1) which includes contributions
up to the sixth power in J approaches the experimental
accuracy. For transitions with J’’ > Jmax systematic devi-
ations occur. We consider this deficiency to be an indica-
tion for the limited validity of the theoretical model used.
Due to the high flexibility of this molecule interactions

Figure 5. Details of the Q-branches of the two tunneling com-
ponents of the Ka = 0 ← 1 subband of ν3. (a) Experimental
spectrum, conditions see Figure 4. (b) Simulated spectrum and
assignments.

between internal motion and rotation may become very
strong for higher J quantum numbers and can hardly be
described by a term formula appropriate for quasi-rigid
molecules.

The identification of the lower states involved in the
transitions of these subbands is based on combination
differences. For both tunneling components of both sub-
bands investigated, a representative number of ground
state combination differences could be formed. Using
accurate ground state parameters from Ref. [28], these
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Table 3. Rovibrational Tunneling Transitions of the Ka = 0← 1 subband of ν6 of (HF)2.

�’t J ‘ Kc’ �t J Kc ν̃obs / cm−1 � / 10−3

Q-branch transitions:
A+ 4 4 A+ 4 4 381.9929 0.19
A+ 7 7 A+ 7 7 381.8358 1.14
A+ 9 9 A+ 9 9 381.6850 0.23
A+ 10 10 A+ 10 10 381.5924 −3.91
A+ 11 11 A+ 11 11 381.4987 −0.07
A+ 12 12 A+ 12 12 381.3905 −1.56
A+ 16 16 A+ 16 16 380.8721 0.26
A+ 17 17 A+ 17 17 380.7184 0.47
A+ 18 18 A+ 18 18 380.5543 0.05
A+ 19 19 A+ 19 19 380.3807 0.06
A+ 20 20 A+ 20 20 380.1959 −1.08
A+ 22 22 A+ 22 22 379.7987 −0.13
A+ 24 24 A+ 24 24 379.3578 −0.59
A+ 26 26 A+ 26 26 378.8744 0.36
A+ 27 27 A+ 27 27 378.6143 −0.54
A+ 28 28 A+ 28 28 378.3452 1.25
A+ 29 29 A+ 29 29 378.0601 −1.02
A+ 30 30 A+ 30 30 377.7658 −0.24
A+ 31 31 A+ 31 31 377.4586 0.18
B+ 4 4 B+ 4 4 383.1514 1.61
B+ 5 5 B+ 5 5 383.1113 −1.02
B+ 6 6 B+ 6 6 383.0669 −0.35
B+ 8 8 B+ 8 8 382.9545 0.44
B+ 9 9 B+ 9 9 382.8867 0.90
B+ 10 10 B+ 10 10 382.8074 −2.24
B+ 11 11 B+ 11 11 382.7250 −0.48
B+ 12 12 B+ 12 12 382.6320 −1.22
B+ 13 13 B+ 13 13 382.5331 0.37
B+ 14 14 B+ 14 14 382.4256 1.71
B+ 15 15 B+ 15 15 382.3071 0.56
B+ 16 16 B+ 16 16 382.1765 −4.03
B+ 17 17 B+ 17 17 382.0473 1.59
B+ 22 22 B+ 22 22 381.2321 −0.46
B+ 23 23 B+ 23 23 381.0396 −1.01
B+ 24 24 B+ 24 24 380.8400 1.68
B+ 25 25 B+ 25 25 380.6244 −1.03
B+ 26 26 B+ 26 26 380.4001 −1.53
B+ 27 27 B+ 27 27 380.1651 −1.54
B+ 28 28 B+ 28 28 379.9210 0.87
B+ 29 29 B+ 29 29 379.6617 −0.07
B+ 30 30 B+ 30 30 379.3918 0.58
B+ 32 32 B+ 32 32 378.8132 1.16
B+ 33 33 B+ 33 33 378.5018 −0.82
P-branch transitions:
A+ 5 5 A+ 6 5 379.2790 −0.22
A+ 6 6 A+ 7 6 378.7733 2.01
A+ 9 9 A+ 10 9 377.1772 −0.40
A+ 10 10 A+ 11 10 376.6257 2.58
A+ 11 11 A+ 12 11 376.0540 −3.04
A+ 12 12 A+ 13 12 375.4787 −0.63
A+ 16 16 A+ 17 16 373.0529 0.68
A+ 17 17 A+ 18 17 372.4174 1.14
A+ 18 18 A+ 19 18 371.7681 −0.46
A+ 19 19 A+ 20 19 371.1094 0.31
A+ 20 20 A+ 21 20 370.4377 −0.07
A+ 21 21 A+ 22 21 369.7556 1.04
A+ 22 22 A+ 23 22 369.0595 0.12
A+ 23 23 A+ 24 23 368.3522 0.05
A+ 25 25 A+ 26 25 366.8978 −3.37
A+ 26 26 A+ 27 26 366.1599 2.70
A+ 27 27 A+ 28 27 365.3985 −2.25
A+ 28 28 A+ 29 28 364.6336 1.91
A+ 31 31 A+ 32 31 362.2470 −0.19
A+ 32 32 A+ 33 32 361.4268 0.82
A+ 34 34 A+ 35 34 359.7424 −0.37
B+ 1 1 B+ 2 1 382.3395 −0.68
B+ 4 4 B+ 5 4 380.9376 1.87
B+ 5 5 B+ 6 5 380.4476 0.72

(continued).
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Table 3. Continued.

�’t J ‘ Kc’ �t J Kc ν̃obs / cm−1 � / 10−3

P-branch transitions:
B+ 6 6 B+ 7 6 379.9444 −3.32
B+ 7 7 B+ 8 7 379.4385 0.27
B+ 8 8 B+ 9 8 378.9188 0.39
B+ 9 9 B+ 10 9 378.3893 1.05
B+ 11 11 B+ 12 11 377.2949 −1.87
B+ 12 12 B+ 13 12 376.7350 −0.39
B+ 14 14 B+ 15 14 375.5809 −0.20
B+ 15 15 B+ 16 15 374.9883 0.24
B+ 16 16 B+ 17 16 374.3833 −1.03
B+ 17 17 B+ 18 17 373.7691 −0.72
B+ 19 19 B+ 20 19 372.5079 −0.17
B+ 20 20 B+ 21 20 371.8617 1.09
B+ 21 21 B+ 22 21 371.2023 0.37
B+ 22 22 B+ 23 22 370.5331 1.21
B+ 23 23 B+ 24 23 369.8502 −0.15
B+ 24 24 B+ 25 24 369.1576 0.47
B+ 25 25 B+ 26 25 368.4526 0.52
B+ 26 26 B+ 27 26 367.7364 1.40
B+ 27 27 B+ 28 27 367.0066 0.90
B+ 28 28 B+ 29 28 366.2636 −0.38
B+ 29 29 B+ 30 29 365.5089 −0.70
B+ 30 30 B+ 31 30 364.7416 −0.73
B+ 32 32 B+ 33 32 363.1660 −2.10
B+ 33 33 B+ 34 33 362.3625 1.90

R-branch transitions:
A+ 16 16 A+ 15 14 387.4104 0.77
A+ 18 18 A+ 17 16 387.8477 2.85
A+ 19 19 A+ 18 17 388.0430 0.93
A+ 20 20 A+ 19 18 388.2258 0.31
A+ 21 21 A+ 20 19 388.3937 −1.22
A+ 22 22 A+ 21 20 388.5486 −1.60
A+ 23 23 A+ 22 21 388.6905 −0.63
A+ 24 24 A+ 23 22 388.8175 0.00
A+ 25 25 A+ 24 23 388.9299 0.80
A+ 26 26 A+ 25 24 389.0281 2.39
A+ 27 27 A+ 26 25 389.1049 −2.17
A+ 28 28 A+ 27 26 389.1731 0.16
B+ 5 5 B+ 4 3 385.2487 −1.76
B+ 6 6 B+ 5 4 385.6255 2.08
B+ 8 8 B+ 7 6 386.3369 0.53
B+ 9 9 B+ 8 7 386.6786 2.45
B+ 10 10 B+ 9 8 387.0048 0.16
B+ 13 13 B+ 12 11 387.9204 −0.57
B+ 19 19 B+ 18 17 389.4290 1.01
B+ 22 22 B+ 21 20 390.0097 1.57
B+ 24 24 B+ 23 22 390.3255 −0.86
B+ 25 25 B+ 24 23 390.4646 0.49
B+ 27 27 B+ 26 25 390.6942 −1.16
B+ 29 29 B+ 28 27 390.8659 0.44

combination differences can be predicted very accu-
rately. As summarised in Table 2, the rms-deviations
amount to about drms = 0.0019 cm−1 for all of the four
subband-tunneling components analyzed. This value
compares well with the experimental uncertainty, which
amounts to 0.0012 cm−1 for a single transition, and
therefore 0.0012

√
2 ≈ 0.0017 cm−1 for the difference

of two transitions. In view of this good consistency,
the identity of the lower state assignments is strongly
confirmed.

In Figures 2 and 4 we compare measured and cal-
culated spectra. The clearly smaller B̄ constants in the
excited ν3 and ν6 states as compared to the ground state

lead to band heads in the R-branches of all subband-
tunneling components. In the case of ν3 the branch
turns near J’’ ≈ 20, and in the case of ν6 at a higher
value of J’’ ≈ 30. The details of the Q-branches shown
in Figures 3 and 5 demonstrate the excellent agree-
ment between experimental and calculated spectra. The
intensity alternation arising from the nuclear spin sta-
tistical weights is unambiguously established and con-
firms the assignment of the symmetry of the vibrational-
tunneling states involved. The figures also show that there
still remains a considerable amount of structure in these
regions which does not belong to the identified sub-
bands. The centrifugal distortion constants Dv0 differ
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Table 4. Rovibrational tunneling transitions of the Ka = 0← 1 subband of ν3 of (HF)2.

�’t J ‘ Kc’ �t J Kc ν̃obs / cm−1 � / 10−3

Q-branch transitions:
A+ 4 4 B+ 4 3 450.2603 −3.02
A+ 5 5 B+ 5 4 450.1723 4.47
A+ 6 6 B+ 6 5 450.0517 −1.67
A+ 7 7 B+ 7 6 449.9220 2.02
A+ 8 8 B+ 8 7 449.7669 −0.82
A+ 9 9 B+ 9 8 449.5986 1.96
A+ 11 11 B+ 11 10 449.1997 1.64
A+ 12 12 B+ 12 11 448.9729 2.35
A+ 13 13 B+ 13 12 448.7248 0.66
A+ 14 14 B+ 14 13 448.4593 0.56
A+ 15 15 B+ 15 14 448.1741 −0.06
A+ 16 16 B+ 16 15 447.8706 0.44
A+ 17 17 B+ 17 16 447.5457 −0.72
A+ 18 18 B+ 18 17 447.2019 −0.63
A+ 20 20 B+ 20 19 446.4511 −0.93
A+ 21 21 B+ 21 20 446.0441 0.10
A+ 22 22 B+ 22 21 445.6146 1.68
A+ 23 23 B+ 23 22 445.1581 0.43
A+ 24 24 B+ 24 23 444.6780 1.04
A+ 25 25 B+ 25 24 444.1685 −0.79
B+ 3 3 A+ 3 2 451.3265 4.48
B+ 4 4 A+ 4 3 451.2332 1.85
B+ 5 5 A+ 5 4 451.1192 1.02
B+ 6 6 A+ 6 5 450.9816 −1.05
B+ 7 7 A+ 7 6 450.8269 2.03
B+ 8 8 A+ 8 7 450.6466 1.60
B+ 9 9 A+ 9 8 450.4414 −1.80
B+ 10 10 A+ 10 9 450.2170 −2.65
B+ 12 12 A+ 12 11 449.7076 −0.45
B+ 15 15 A+ 15 14 448.7818 −0.36
B+ 16 16 A+ 16 15 448.4322 0.23
B+ 17 17 A+ 17 16 448.0619 0.64
B+ 18 18 A+ 18 17 447.6701 −0.03
B+ 19 19 A+ 19 18 447.2600 1.32
B+ 21 21 A+ 21 20 446.3756 0.67
B+ 22 22 A+ 22 21 445.9040 1.40
B+ 23 23 A+ 23 22 445.4110 1.18
B+ 24 24 A+ 24 23 444.8969 0.48
B+ 25 25 A+ 25 24 444.3613 −0.85
B+ 26 26 A+ 26 25 443.8046 −2.06
B+ 27 27 A+ 27 26 443.2276 −1.92
B+ 28 28 A+ 28 27 442.6273 −2.89
B+ 29 29 A+ 29 28 442.0069 −1.12
B+ 30 30 A+ 30 29 441.3622 −0.02
B+ 31 31 A+ 31 30 440.6948 2.92

P-branch transitions:
A+ 4 4 B+ 5 5 448.1219 −3.29
A+ 5 5 B+ 6 6 447.6105 −1.17
A+ 6 6 B+ 7 7 447.0842 1.72
A+ 8 8 B+ 9 9 445.9769 −0.51
A+ 10 10 B+ 11 11 444.8100 −0.59
A+ 11 11 B+ 12 12 444.2024 −1.76
A+ 12 12 B+ 13 13 443.5849 2.50
A+ 14 14 B+ 15 15 442.2919 −0.76
A+ 15 15 B+ 16 16 441.6242 −0.25
A+ 16 16 B+ 17 17 440.9418 1.38
A+ 17 17 B+ 18 18 440.2380 −2.26
A+ 18 18 B+ 19 19 439.5218 −1.78
A+ 20 20 B+ 21 21 438.0367 −1.79
A+ 21 21 B+ 22 22 437.2689 0.21
A+ 23 23 B+ 24 24 435.6725 2.57
A+ 24 24 B+ 25 25 434.8392 0.59
B+ 5 5 A+ 6 6 448.5644 1.76
B+ 6 6 A+ 7 7 448.0138 0.86
B+ 7 7 A+ 8 8 447.4442 −0.26
B+ 9 9 A+ 10 10 446.2505 −1.41

(continued).
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Table 4. Continued.

�’t J ‘ Kc’ �t J Kc ν̃obs / cm−1 � / 10−3

P-branch transitions:
B+ 11 11 A+ 12 12 444.9853 −1.29
B+ 12 12 A+ 13 13 444.3235 −3.66
B+ 17 17 A+ 18 18 440.7727 2.05
B+ 19 19 A+ 20 20 439.2322 2.03
B+ 20 20 A+ 21 21 438.4366 1.48
B+ 21 21 A+ 22 22 437.6238 0.24
B+ 22 22 A+ 23 23 436.7977 2.24
B+ 25 25 A+ 26 26 434.2108 0.32
B+ 26 26 A+ 27 27 433.3167 2.28
B+ 27 27 A+ 28 28 432.3989 −1.63
B+ 29 29 A+ 30 30 430.5172 0.25
B+ 30 30 A+ 31 31 429.5446 −1.24
R-branch transitions:
A+ 12 12 B+ 11 11 454.3997 0.36
A+ 13 13 B+ 12 12 454.6199 −2.17
A+ 14 14 B+ 13 13 454.8288 0.74
A+ 15 15 B+ 14 14 455.0189 1.83
A+ 16 16 B+ 15 15 455.1872 −1.58
A+ 18 18 B+ 17 17 455.4779 −0.70
A+ 20 20 B+ 19 19 455.6909 −2.15
A+ 22 22 B+ 21 21 455.8276 1.92
A+ 26 26 B+ 25 25 455.8049 −1.76
B+ 7 7 A+ 6 6 453.9487 −1.08
B+ 8 8 A+ 7 7 454.2250 −2.96
B+ 10 10 A+ 9 9 454.7234 −3.42
B+ 11 11 A+ 10 10 454.9483 0.57
B+ 12 12 A+ 11 11 455.1488 −0.98
B+ 13 13 A+ 12 12 455.3335 0.41
B+ 15 15 A+ 14 14 455.6432 −0.71
B+ 18 18 A+ 17 17 455.9721 0.30
B+ 19 19 A+ 18 18 456.0446 0.24
B+ 21 21 A+ 20 20 456.1323 −1.84
B+ 26 26 A+ 25 25 456.0269 −0.40
B+ 29 29 A+ 28 28 455.7203 0.02
B+ 30 30 A+ 29 29 455.5747 1.22

considerably from the ground state values. They also dif-
fer strongly for the different tunneling components. The
values of the sextic constants vary even more strongly.
We consider this to be an indication for a stronger influ-
ence of the flexibility of this molecule in the vibrationally
excited states. As one can hardly give a simple physical
interpretation for these parameters, we consider them
primarily as effective fitting variables, which do, however,
allow for a compact and accurate representation of the
experimental energy level structure of HFHF.

Table 5 shows a comparison of experimental and
calculated vibrational-tunneling term values for vari-
ous types of potential energy surfaces and approxima-
tions. Whereas predictions based on the SQSBDE poten-
tial energy surface [4,39] are considerably off, we find
rather good agreement for the more recent calculations
based on the SO-3 surface [29,56,57] and on the most
recent HYZX [30] and RPB surfaces [31] which, how-
ever, give even a little less good predictions than the
SO-3 surface of [29], which still can be considered to be
the ‘best compromise’ potential hypersurface. Concern-
ing the tunneling splitting, the agreement is generally
excellent in the case of the out-of-plane fundamental

ν6, but differs in part considerably in the case of ν3,
where we observe a very small negative shift. In the
region of ν3, the density of bound states having sym-
metry A+ or B+ as also the tunneling components of
ν3, is much higher than in the region of ν6. In particu-
lar, there are 5 additional bound states with �vt = A+ or
B+ in the interval 400–550 cm−1, one of them being in
near coincidence with the corresponding tunneling level
of ν3 (an A+ state at 478.32 cm−1, 6D calculation, and a
B+ state at 481.78 cm−1, respectively, both representing
highly excited FF-stretching states). A small change in the
form of the potential energy surface is therefore expected
to have a strong effect on the mixing of zeroth-order
states and therefore on the tunneling splittingswhichmay
strongly depend on this composition. The present result
for ν6 also confirms the unusual sequence of the levels
for Ka = 0 and 1, the level for Ka = 0 lying above the
one for Ka = 1. This agrees with the calculations on the
SO-3 surface. This unusual level sequence was already
surmised in 1987 in our early work [26] as a realistic pos-
sibility due to Coriolis coupling and was traced to strong
a-axis Coriolis interaction between the in- and out-of-
plane bending modes in [29]. This special situation for
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Table 5. Comparison of experimental and calculated term values and tunneling splittings (in cm−1) for Ka = 0. The term values are
relative to the ground state A+ tunneling level.

SO-3(a) SO-3 SQSBDE HYZX RPB
6D (4+ 2)D 6D 6D 6D

Vibration �t Experimental Refs. [6,57] Ref. [56] Refs. [4,39](b) Ref. [30] Ref. [31]

ν3 A+ 486.9442 483.48 482.73 425.30 481.647 490.5 (484.4)(c)

B+ 486.8834 486.12 485.21 440.32 481.322 491.7
�νt (ν3) –0.0608 2.65 2.48 15.02 –0.325 1.21
ν6 A+ 417.5053 420.83 420.48 378.72 413.271 418.6 (418.4)(c)

B+ 419.7140 423.10 422.84 380.47
�νt (ν6) 2.2087 2.22 2.36 1.75 2.284 2.13

(a)See also further references in [6] and Ref. [29] for the potential hypersurface;
(b)See also [60] for differing results;
(c)Ref. [31], values taken from the supplementary tables, the values in parentheses from the respective columns Pall in the tables of [31], including all corrections
by calculating ν̃calc = ν̃obs – Pall.

Ka = 1 also shows up in the Ka dependence of the tun-
neling splitting as well as the rotational constant B̄ [26,27]
which reveal local extrema atKa = 1.Wemight mention
here also approximate full-dimensional quantum results
on SQSBDE, which differ slightly [60].

A Ka = 0 combination level experimentally known
involving ν3 is ν1+ ν3 [61]. An interesting question con-
cerns the degree of additivity of spectroscopic parameters
of the levels ν1 and ν3 to obtain estimates of correspond-
ing quantities for the combination level. In particular we
tested the additivity of the vibrational term values, of the
tunneling-splittings and of the dependence of the rota-
tional constants B̄ upon vibrational state v expressed by
the αB̄i constants defined by [62]

B̄v = B̄e −
∑
i
αB̄i

(
vi + 1

2

)
(8)

The values collected in Table 6 reflect a high degree
of additivity. The vibrational term values and tunnel-
ing splitting agree reasonably well. The very small cross
anharmonicities between the intramolecular ν1 mode
on one hand and the intermolecular mode ν3 on the
other hand is not too surprising since ν1 corresponds to
the free HF stretching mode which obviously does not
strongly influence the dynamics of the intermolecular
(low-frequency) modes. In the case of the αB̄i constants,

Table 6. Comparison of parameters of the combination level
ν1+ ν3 with the sum of the corresponding parameters of the
separate levels ν1 and ν3 listed in column ‘ν1 plus ν3’.

ν1 ν3 ν1 plus ν3 ν1+ ν3
�t Ref. [47] (a) this work Ref. [61]

ν̃ν0 A+ 3930.903 486.9442 4417.8472 4418.0629
B+ 3931.118 486.8834 4418.0014 4417.9183

�νt 0.2150 –0.0608 0.1542 –0.1446
αB̄ν0 A+ –0.001225 0.007819 0.006594 0.007453

B+ –0.001293 0.009287 0.007994 0.007705

(a)See also Ref. [63].

the additivity is less perfect although the tendency is
clearly indicated.

6. Conclusions

The present work has as main experimental result a first
assignment and analysis of the K = 0 ← 1 transitions
for the in-plane fundamental ν3 and the out-of-plane
fundamental ν6 of the hydrogen bonded dimer (HFHF).
Together with the very accurate knowledge of the K = 1
level in the vibrational ground state from our previ-
ous work [28,53], this provides highly accurate values
for the purely vibrational term values (with K = 0) of
the tunneling sublevels of these two fundamentals (see
Table 5). For ν6 this result agrees with a tentative assign-
ment mentioned already in the very first investigation
of high-resolution spectra of (HFHF) in the far infrared
where an accurate term value for the K = 1 level of ν6
was obtained [26]. However, based on the data available
then, the assignment of the position of the K = 0 level
of ν6 remained ambiguous, allowing either for a ‘high’
value of ν6 (the K = 0 level being then above the K = 1
level as found in the present work) or else for a ‘low’ value
for the v6 = 1, K = 0 level, below the K = 1 level of ν6.
The new experimental results presented here establish
the high value for ν6 without ambiguity.

The situation was even more difficult for the funda-
mental ν3 which resisted an accurate analysis for a long
time. Again, both ‘high’ and ‘low’ values were discussed

Figure 6. Qualitative graphical representation of the vibrational
modes ν3 and ν6 in (HFHF).
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as possible alternatives for this fundamental. From the
limited theoretical and experimental information avail-
able early on, we favoured a ‘high’ value, for instance in
[43] (for the harmonic wavenumber ω3 and by inference
for ν3). However, in the design of the later widely used
full-dimensional SQSBDE potential hypersurface [4] a
‘low’ value for ν3 (and for ω3) resulted from a fit to low
level ab initio potential points and some empirical adjust-
ment. As the ambiguity was recognized already then, this
led to several theoretical efforts with higher level ab initio
calculations which all preferred ‘high’ values for ω3 (and
by inference for ν3) [23,29,40,41]. Finally a whole group
of newly designed full-dimensional potential hypersur-
faces based on new high level ab initio results and some
empirical adjustment provided predictions of the ‘high’
values for both ν3 and ν6 [7,23,29]. The present experi-
mental results provide proof without ambiguity also for
the ‘high’ values of ν3 (Table 5). Figure 6 provides a qual-
itative picture of the motion related to these two vibra-
tional modes, an in-plane and out-of-plane ‘bending’
mode, which most importantly involve displacements of
the hydrogen atoms from the equilibrium geometry, with
ν3 corresponding to a conrotatory in-plane motion.

One might on the basis of the atomic motions in these
vibrationalmodes address the question ofmode-selective
enhancement or inhibition of tunneling by vibrational
excitation of ν3 and ν6, which in a normal mode pic-
ture are separable from the in-plane disrotatory bend-
ing mode, which represents the tunneling mode for the
hydrogen bond switching process,

.

As the electronic barrier at the C2h saddle point
along the switching path is about 350 cm−1 (±20 cm−1
according to a best estimate from [7], and 337 cm−1
in the SO-3 surface [29]) the excitation of either ν3
or ν6 with one quantum leads to quasiadiabatic chan-
nel above barrier tunneling [5,6,22] (see also the dis-
cussion on the fully anharmonic quasiadiabatic channel
potential by Diffusion Quantum Monte Carlo methods
[28]). The excitation of ν6 leads to enhancement of tun-
neling (with tunneling splitting of 0.659 cm−1 in the
ground state and 2.209 cm−1 in v6 = 1), and all theoreti-
cal treatments summarized in Table 5 are consistent with
this experimental result. On the other hand, the exci-
tation of ν3 leads to an inverted and in absolute value
much reduced tunneling splitting (by the definition of
�ν̃ = ν̃B+− ν̃A+ = −0.061 cm−1, being then negative).

The theoretical splittings are variable, depending on the
potential hypersurface used (one with negative �ν̃ and
three with positive �ν̃ in Table 5), none of them being
very close to the experimental result. This indicates very
complex multidimensional dynamic effects on the tun-
neling, which one might interpret in terms of vibra-
tionally non-adiabatic couplings with close lying ‘per-
turber’ states. This complex situation was already dis-
cussed for (HFHF) in [28,53] and furthermore there is
a strong dependence of tunneling on the quantum num-
ber K. This behaviour is quite different from tunneling in
HOOH and similar molecules, where tunneling can be
well described with the quasiadiabatic channel reaction
path Hamiltonian treatment [64–66]. However, complex
vibrationally nonadiabatic effects are also found in the
prototypical molecule NH3 for inversion tunneling ([67]
and references cited therein).

As part of a larger project of spectroscopic studies cov-
ering the whole infrared range from the far-infrared to
the visible ranges [5–13,26–29,43,44,47,53,58,59,70] the
present investigations of ν3 and ν6 aim also at providing
benchmark results for ab initio calculations, which are,
indeed, numerous for this prototypical hydrogen bonded
dimer (see Refs. [23,29–36,40,41,68,69], this list being by
no means complete). Furthermore the potential hyper-
surfaces based on the spectroscopic and ab initio results
have also been used for benchmark studies of quan-
tum eigenstate calculations. In this context notably the
older SQSBDE potential [4] has been widely used as basis
for such benchmark studies [8,38,39,56–58,60,70–83].
More recently also the improved potential SO-3 has been
used as well by some authors [29,57–59,71,84,85]. We
have shown in recent work completing the overtone HF-
stretching polyad analyses to N = 2 in the near infrared
that, indeed, SO-3 is able to reproduce well the experi-
mental results [6,42,59]. For the recent ab initio surfaces
[30,31] the N = 2 polyad overtone tunneling sublevels
have not yet been computed. However, as summarized
in Table 5 for ν3 and ν6 and more completely also for
the other modes in Ref. [6], for the low frequency modes
the SO-3 surface performs overall as well or even better
than themost recent ab initio potentials. The dynamically
very important hydrogen bond dissociation energy cor-
responding to D0 = 1062 cm−1 is perfectly represented
by SO-3 (being adjusted to this value). There are still
sizable differences in D0 for the HYZX surface (Ref.
[30], D0 = 1037.5 cm−1) and for the RPB surface (Ref.
[31], D0 = 1065.6 cm−1). Thus we may conclude that
in consideration of the present and previous results the
SO-3 potential hypersurface can be considered to be the
best compromise currently available for use in quantum
dynamical calculations of HFHF.
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We might mention also the significance of such spec-
troscopic experiments combined with full-dimensional
theoretical benchmark results in relation to the quan-
tum dynamics of hydrogen bonded clusters in gen-
eral including the particularly important water clusters
(H2O)n [86–91]. For instance, the early full-dimensional
potential and quantum dynamical results for (HFHF)
demonstrated the importance of a fully 6D treatment
for the tunneling-rotation–vibration problem [4], as
it showed large differences compared to the common
reduced dimensional treatments with keeping the HF
bond lengths as intramolecular degrees of freedom fixed
[92]. Such reduced dimensional treatments with frozen
intramolecular degrees of freedom were commonly used
for more complex clusters such as (H2O)2. The find-
ings with full dimensional dynamics of (HF)2 motivated
then full dimensional treatments also for (H2O)2, show-
ing important effects on the dimer properties [87–89],
including the ground state dissociation energy D0 as
compared to the dissociation energy De from electronic
structure theory for (H2O)2 [91], as well as other eigen-
state properties. In an even broader context the spectro-
scopic results for HFHF dynamics can be considered as
simple prototypes for the dynamics of rotors in molec-
ular machines [93,94] or for understanding hydrogen
bonding in general [95–97].
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