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Status. Precision experiments measuring the extremely
small energy difference A, E between the enantiomers of
chiral molecules, predicted to be of the order of 100 aeV to
1 feV (depending on the molecule), are among the greatest
challenges in physical-chemical stereochemistry relating also
to the standard model of particle physics (SMPP) [31-37]. So
far, no successful experiments have been reported, and it turns
out that STIRAP [38] may contribute importantly to enabling
such precision experiments.

Following the discovery of parity violation in nuclear and
particle physics in 1956/57 it has been surmised qualitatively
that the ground-state energies of the enantiomers of chiral
molecules are slightly different, as are also their absorption
frequencies in the infrared or other spectral ranges. Thus,
parity violation is of fundamental importance for our
understanding of the structure and dynamics of chiral
molecules with potential implications for the evolution of
biomolecular homochirality, which has been an enigma of
stereochemistry for more than a century (for in depth reviews
see [31-34]). A scheme of how to measure the parity
violating energy difference Ay, E between the ground state of
the enantiomers of chiral molecules (and also A, E * between
corresponding excited rovibronic states) was proposed in
1986 [35]. At that time, however, the spectroscopic ground
work of high-resolution analyses of rovibronic spectra of
chiral molecules was not available and appeared very
difficult. Also, theories available at that time were incorrect,
predicting values too low by a factor of 100 for typical
prototype molecules (see review [33]), and the proposed
experiment on Ay E appeared correspondingly almost
impossible.

The situation has changed importantly over the last
decades. Theoretical approaches developed by many groups
over the last decades following our discovery in 1995 of the
new orders of magnitude agree to converge today to the larger
values. At the same time, there has been substantial progress
in the high-resolution spectroscopy of chiral molecules, as
well as in laser technology, enabling efficient and selective
population transfer, therefore making the observation of A, E
a realistic goal for our current experiments (see [33, 36]).

The basic experimental scheme is shown in figure 6. In
brief, a first-step laser excitation of a chiral molecule (either
enantiopure or simply from a racemate) leads to the
preparation of an excited rovibronic state of well-defined
parity, which is therefore achiral. Such a state can either arise
from an excited electronic state with an achiral (for example
planar) equilibrium structure, or it can arise from rovibra-
tional-tunneling sublevels in the electronic ground state,
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Figure 6. A scheme of the preparation and detection steps for the
time resolved experiment to measure Ay, E. Top: the transitions to
the intermediate states are indicated together with the corresponding
wave functions for an excited state with well-defined parity close to
the barrier of a double minimum potential (full line) or an achiral
electronically excited state (dashed line) as an intermediate. The
right-hand part shows the sensitive detection step with REMPL
Middle: a summary scheme for the three steps. Bottom: the spectra
of the normal enantiomers (top) and of the selected positive (blue)
and negative (red) parity isomers (modified after [34-36]). Here, n is
a reduced frequency difference (v — vy) /vy, Where the frequency
spacings between lines are of the order of MHz in order to separate
lines connecting states of different parity (4 or —) in the rovibronic
resolved spectrum. The high resolution (Hz to subHz) needed for
ApyE is obtained by measuring the time evolution of the spectrum in
the middle towards the spectrum at the bottom at very high
sensitivity in the ms timescale.

n

which are near or above the potential barrier for interconver-
sion between the enantiomers. Such tunneling sublevels can
therefore satisfy the condition that the tunneling splitting AE.*
between sublevels of well-defined parity in that excited state
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Figure 7. Time evolution of a three-level system exposed to two laser pulses nearly resonant with |1) — |2), and with |2) — |3) transition for
different pulse conditions: Pump—Dump (Stokes), no frequency chirp (upper left), Pump—Dump (Stokes), small frequency chirp

(0.25 MHzs™!, upper right), Pump—Dump (Stokes), larger frequency chirp (2.0 MHzs~!, lower left), STIRAP Dump (Stokes)—Pump (lower
right). Time-dependent level populations: |1): black, |2): red, |3): blue. The laser pulses are indicated by the dashed line (Pump: black, Dump

(Stokes): blue). Experimental conditions: vibrational transition moments: i1, = p,; = 0.0262 D, laser power: Pump: 0.6 W, Stokes: 0.5 W,
pulse duration: 7 = 1.31 s. Reprinted from [36], with the permission of AIP Publishing.

is much larger than A, E*,

AEY > AL E*. (8)
This then allows for a spectroscopic selection of states of
well-defined parity. In a second step in the scheme of figure 6
one prepares a state of well-defined parity in the ground state
(or some other low energy state), which satisfies the condition

A E > AE.. 9)

The parity selection arises from the electric dipole selection
rule connecting levels of different parity. Thus, if in the first
step one has selected a state of some given parity, in the
second step one prepares a state of the opposite parity. Such a
state is a superposition of the energy eigenstates of the two
enantiomers separated by Ay E, and therefore shows a
periodic time evolution with a period
h

Tpy = .
P ANE

(10)

In such a state parity evolves in time due to parity violation,
and parity is not a constant of the motion. The probability of
finding a given parity (p™ for positive parity and p~ for
negative parity) is given by equation (11)

ﬁAvat)
i iy | (11)

pr(=1-p"n= Sinz(
In the third step the initially ’forbidden’ population of
negative parity p—(¢) is probed very sensitively, for example,
by resonantly enhanced multiphoton ionization (REMPI).
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This is possible, because the line spectra of positive and
negative parity isomers are different, with lines that are well
separated at high resolution (figure 6 and [37]). In this fashion
it is not necessary to wait for a whole period, but it is
sufficient to probe the initial time evolution at very early
times. The sensitivity in the probe step determines in essence
how small a value of A, E can be measured. In a recent test
experiment with a current experimental setup in our
laboratory, on the achiral molecule ammonia, NHj3, it was
estimated that an energy difference as small as 100 aeV
should be measurable with the existing current experiment.

The original proposal of 1986 [35] preceded the
invention of STIRAP [38], and therefore assumed population
transfer using pulse shaping or chirp by rapid adiabatic
passage (RAP). It is clear, however, that STIRAP is an ideal
technique for generating population transfer in a well-
controlled fashion.

Current and future challenges. Figure 7 shows simulations
of population transfer using various methods, including
STIRAP (see [36]). In the experiment using RAP we could
demonstrate a population transfer efficiency for the combined
two-step procedure of about 60%. Because of the better and
more flexible control of experimental parameters in the
STIRAP process [38], it should be possible to achieve a
transfer efficiency near to 100%. The modifications needed to
implement the STIRAP process in the current experimental
setup are relatively straightforward, although not trivial. The



J. Phys. B: At. Mol. Opt. Phys. 52 (2019) 202001

Roadmap

major current and future challenges are related to the much
greater complexity of the rovibrational-tunneling spectra of
chiral molecules compared to the test molecule NH; with the
well-known spectra. However, the first spectroscopic
investigations on two candidate molecules proved promising
(1, 2-dithiine, C4;H4S, [39] and trisulfane HSSSH [40]).

Advances in science and technology to meet challenges. The
current CW-OPO laser systems (coupled to a frequency comb)
only cover spectral ranges above about 2500cm ™' in the
infrared. This limits the choice of molecules. Further
development in laser technology, e.g. of quantum cascade
lasers with power and resolution meeting our needs in the
future, might make other molecules accessible, e.g. the simpler
molecule CIOOCI, for which complete theoretical simulations
of the experiment have been achieved already [37].

Concluding remarks. While the experiment to measure Ay, E
might have appeared impossible, when it was first proposed in
1986 [35] the current outlook for a successful experiment is
excellent. Indeed, provided that adequate funding for the
continuation of the current project is guaranteed and required

13

spectroscopic analyses can be completed, most significant
results can be expected for any of two possible outcomes:

1. Either one finds experimentally the theoretically
predicted values for A, E, then one can analyze the
results of the precision experiments in terms of the
SMPP in a range not yet tested by previous
experiments.

. Or else one finds values for A, E different from the
theoretical predictions. This will then lead to a
fundamental revision of current theories for A, E also
with the potential for new physics.

In addition, the experimental results will have implica-
tions for our understanding of the evolution of biomolecular
homochirality.
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