A2.3 Precision experiments for parity violation in chiral molecules: the role of STIRAP

Eduard Miloglyadov, Martin Quack, Georg Seyfang, Gunther Wichmann

Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland, <u>Martin@Quack.ch</u>

J. Phys. B: At. Mol. Opt. Phys. 52 (2019) 202001 Roadmap pages 11-13 and references pages 51-52

Reprinted from

J. Phys. B: At. Mol. Opt. Phys. 52 (2019) 202001 (55pp) https://doi.org/10.1088/1361-6455/ab3995 Roadmap on STIRAP applications by Klaas Bergmann1,29, Hanns-Christoph Nägerl2, Cristian Panda3,4, Gerald Gabrielse3,4, Eduard Miloglyadov5, Martin Quack5, Georg Seyfang5, Gunther Wichmann5, Silke Ospelkaus6, Axel Kuhn7, Stefano Longhi8, Alexander Szameit9, Philipp Pirro1 , Burkard Hillebrands1, Xue-Feng Zhu10, Jie Zhu11, Michael Drewsen12, Winfried K Hensinger13 , Sebastian Weidt13, Thomas Halfmann14, Hai-Lin Wang15, Gheorghe Sorin Paraoanu16, Nikolay V Vitanov17, Jordi Mompart18, Thomas Busch19, Timothy J Barnum20, David D Grimes3,21,22, Robert W Field20, Mark G Raizen23, Edvardas Narevicius24, Marcis Auzinsh25, Dmitry Budker26,27, Adriana Pálffy28 and Christoph H Keitel28

A2.3 Precision experiments for parity violation in chiral molecules: the role of STIRAP

Eduard Miloglyadov, Martin Quack, Georg Seyfang, Gunther Wichmann

Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland, Martin@Quack.ch

Status. Precision experiments measuring the extremely small energy difference $\Delta_{pv}E$ between the enantiomers of chiral molecules, predicted to be of the order of 100 aeV to 1 feV (depending on the molecule), are among the greatest challenges in physical-chemical stereochemistry relating also to the standard model of particle physics (SMPP) [31–37]. So far, no successful experiments have been reported, and it turns out that STIRAP [38] may contribute importantly to enabling such precision experiments.

Following the discovery of parity violation in nuclear and particle physics in 1956/57 it has been surmised qualitatively that the ground-state energies of the enantiomers of chiral molecules are slightly different, as are also their absorption frequencies in the infrared or other spectral ranges. Thus, parity violation is of fundamental importance for our understanding of the structure and dynamics of chiral molecules with potential implications for the evolution of biomolecular homochirality, which has been an enigma of stereochemistry for more than a century (for in depth reviews see [31-34]). A scheme of how to measure the parity violating energy difference $\Delta_{pv}E$ between the ground state of the enantiomers of chiral molecules (and also $\Delta_{pv}E^*$ between corresponding excited rovibronic states) was proposed in 1986 [35]. At that time, however, the spectroscopic ground work of high-resolution analyses of rovibronic spectra of chiral molecules was not available and appeared very difficult. Also, theories available at that time were incorrect, predicting values too low by a factor of 100 for typical prototype molecules (see review [33]), and the proposed experiment on $\Delta_{pv}E$ appeared correspondingly almost impossible.

The situation has changed importantly over the last decades. Theoretical approaches developed by many groups over the last decades following our discovery in 1995 of the new orders of magnitude agree to converge today to the larger values. At the same time, there has been substantial progress in the high-resolution spectroscopy of chiral molecules, as well as in laser technology, enabling efficient and selective population transfer, therefore making the observation of $\Delta_{pv}E$ a realistic goal for our current experiments (see [33, 36]).

The basic experimental scheme is shown in figure 6. In brief, a first-step laser excitation of a chiral molecule (either enantiopure or simply from a racemate) leads to the preparation of an excited rovibronic state of well-defined parity, which is therefore achiral. Such a state can either arise from an excited electronic state with an achiral (for example planar) equilibrium structure, or it can arise from rovibrational-tunneling sublevels in the electronic ground state,

Figure 6. A scheme of the preparation and detection steps for the time resolved experiment to measure $\Delta_{pv}E$. Top: the transitions to the intermediate states are indicated together with the corresponding wave functions for an excited state with well-defined parity close to the barrier of a double minimum potential (full line) or an achiral electronically excited state (dashed line) as an intermediate. The right-hand part shows the sensitive detection step with REMPI. Middle: a summary scheme for the three steps. Bottom: the spectra of the normal enantiomers (top) and of the selected positive (blue) and negative (red) parity isomers (modified after [34-36]). Here, n is a reduced frequency difference $(\nu - \nu_0)/\nu_0$, where the frequency spacings between lines are of the order of MHz in order to separate lines connecting states of different parity (+ or -) in the rovibronic resolved spectrum. The high resolution (Hz to subHz) needed for $\Delta_{pv}E$ is obtained by measuring the time evolution of the spectrum in the middle towards the spectrum at the bottom at very high sensitivity in the ms timescale.

which are near or above the potential barrier for interconversion between the enantiomers. Such tunneling sublevels can therefore satisfy the condition that the tunneling splitting ΔE_{\pm}^* between sublevels of well-defined parity in that excited state

Figure 7. Time evolution of a three-level system exposed to two laser pulses nearly resonant with $|1\rangle \rightarrow |2\rangle$, and with $|2\rangle \rightarrow |3\rangle$ transition for different pulse conditions: Pump—Dump (Stokes), no frequency chirp (upper left), Pump—Dump (Stokes), small frequency chirp (0.25 MHzs⁻¹, upper right), Pump—Dump (Stokes), larger frequency chirp (2.0 MHzs⁻¹, lower left), STIRAP Dump (Stokes)—Pump (lower right). Time-dependent level populations: $|1\rangle$: black, $|2\rangle$: red, $|3\rangle$: blue. The laser pulses are indicated by the dashed line (Pump: black, Dump (Stokes): blue). Experimental conditions: vibrational transition moments: $\mu_{12} = \mu_{23} = 0.0262$ D, laser power: Pump: 0.6 W, Stokes: 0.5 W, pulse duration: $\tau = 1.31$ s. Reprinted from [36], with the permission of AIP Publishing.

is much larger than $\Delta_{pv}E^*$,

$$\Delta E_{+}^{*} \gg \Delta_{\rm pv} E^{*}. \tag{8}$$

This then allows for a spectroscopic selection of states of well-defined parity. In a second step in the scheme of figure 6 one prepares a state of well-defined parity in the ground state (or some other low energy state), which satisfies the condition

$$\Delta_{\rm pv} E \gg \Delta E_{\pm}.$$
 (9)

The parity selection arises from the electric dipole selection rule connecting levels of different parity. Thus, if in the first step one has selected a state of some given parity, in the second step one prepares a state of the opposite parity. Such a state is a superposition of the energy eigenstates of the two enantiomers separated by $\Delta_{pv}E$, and therefore shows a periodic time evolution with a period

$$\tau_{\rm pv} = \frac{h}{\Delta_{\rm pv} E}.$$
(10)

In such a state parity evolves in time due to parity violation, and parity is not a constant of the motion. The probability of finding a given parity (p^+ for positive parity and p^- for negative parity) is given by equation (11)

$$p^{-}(t) = 1 - p^{+}(t) = \sin^2\left(\frac{\pi \Delta_{pv} Et}{h}\right).$$
 (11)

In the third step the initially 'forbidden' population of negative parity $p^{-}(t)$ is probed very sensitively, for example, by resonantly enhanced multiphoton ionization (REMPI).

This is possible, because the line spectra of positive and negative parity isomers are different, with lines that are well separated at high resolution (figure 6 and [37]). In this fashion it is not necessary to wait for a whole period, but it is sufficient to probe the initial time evolution at very early times. The sensitivity in the probe step determines in essence how small a value of $\Delta_{pv}E$ can be measured. In a recent test experiment with a current experimental setup in our laboratory, on the achiral molecule ammonia, NH₃, it was estimated that an energy difference as small as 100 aeV should be measurable with the existing current experiment.

The original proposal of 1986 [35] preceded the invention of STIRAP [38], and therefore assumed population transfer using pulse shaping or chirp by rapid adiabatic passage (RAP). It is clear, however, that STIRAP is an ideal technique for generating population transfer in a well-controlled fashion.

Current and future challenges. Figure 7 shows simulations of population transfer using various methods, including STIRAP (see [36]). In the experiment using RAP we could demonstrate a population transfer efficiency for the combined two-step procedure of about 60%. Because of the better and more flexible control of experimental parameters in the STIRAP process [38], it should be possible to achieve a transfer efficiency near to 100%. The modifications needed to implement the STIRAP process in the current experimental setup are relatively straightforward, although not trivial. The

major current and future challenges are related to the much greater complexity of the rovibrational-tunneling spectra of chiral molecules compared to the test molecule NH_3 with the well-known spectra. However, the first spectroscopic investigations on two candidate molecules proved promising (1, 2-dithiine, C₄H₄S₂ [39] and trisulfane HSSSH [40]).

Advances in science and technology to meet challenges. The current CW-OPO laser systems (coupled to a frequency comb) only cover spectral ranges above about 2500 cm^{-1} in the infrared. This limits the choice of molecules. Further development in laser technology, e.g. of quantum cascade lasers with power and resolution meeting our needs in the future, might make other molecules accessible, e.g. the simpler molecule ClOOCl, for which complete theoretical simulations of the experiment have been achieved already [37].

Concluding remarks. While the experiment to measure $\Delta_{pv}E$ might have appeared impossible, when it was first proposed in 1986 [35] the current outlook for a successful experiment is excellent. Indeed, provided that adequate funding for the continuation of the current project is guaranteed and required

spectroscopic analyses can be completed, most significant results can be expected for any of two possible outcomes:

- 1. Either one finds experimentally the theoretically predicted values for $\Delta_{pv}E$, then one can analyze the results of the precision experiments in terms of the SMPP in a range not yet tested by previous experiments.
- 2. Or else one finds values for $\Delta_{pv}E$ different from the theoretical predictions. This will then lead to a fundamental revision of current theories for $\Delta_{pv}E$ also with the potential for new physics.

In addition, the experimental results will have implications for our understanding of the evolution of biomolecular homochirality.

Acknowledgments

We acknowledge recent support from generous ETH grants and from an ERC Advanced Grant. The contributions of our coworkers in previous stages of the project can be seen from the references and reviews cited, and we are grateful for current help and support from Frédéric Merkt and Daniel Zindel.

References

- Fleischhauer M, Imamoglu A and Marangos J P 2005 Electromagnetically induced transparency: optics in coherent media *Rev. Mod. Phys.* 77 633–73
- [2] Gaubatz U, Rudecki P, Schiemann S and Bergmann K 1990 Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results *J. Chem. Phys.* **92** 5363–76
- [3] Marte P, Zoller P and Hall J L 1991 Coherent atomic mirrors and beam splitters by adiabatic passage in multilevel systems *Phys. Rev.* A 44 R4118–21
- [4] Bergmann K, Theuer H and Shore B W 1998 Coherent population transfer among quantum states of atoms and molecules *Rev. Mod. Phys.* 70 1003–26
- [5] Vitanov N V, Fleischhauer M, Shore B W and Bergmann K 2001 Coherent manipulation of atoms and molecules by sequential laser pulses *Adv. At. Mol. Opt. Phys.* 46 55–190
- [6] Bergmann K, Vitanov N V and Shore B W 2015 Stimulated Raman adiabatic passage: the status after 25 years J. Chem. Phys. 142 170901
- [7] Vitanov N V, Rangelov A A, Shore B W and Bergmann K 2017 Stimulated Raman adiabatic passage in physics, chemistry, and beyond *Rev. Mod. Phys.* 89 015006
- [8] Martin J, Shore B W and Bergmann K 1996 Coherent population transfer in multilevel systems with magnetic sublevels III *Experimental results Phys. Rev.* A 54 1556–69
- Halfmann T and Bergmann K 1996 Coherent population transfer and dark resonances in SO₂ J. Chem. Phys. 104 7068–72
- [10] Jakubetz W 2012 Limitations of STIRAP-like population transfer in extended systems: the three-level system embedded in a web of background states J. Chem. Phys. 137 224312
- [11] Chin C, Grimm R, Julienne P S and Tiesinga E 2010 Feshbach resonances in ultracold gases *Rev. Mod. Phys.* 82 1225
- [12] Winkler K, Lang F, Thalhammer G, van der Straten P, Grimm R and Hecker Denschlag J 2007 Coherent optical transfer of feshbach molecules to a lower vibrational state *Phys. Rev. Lett.* **98** 043201
- [13] Danzl J G, Haller E, Gustavsson M, Mark M J, Hart R, Bouloufa N, Dulieu O, Ritsch H and Nägerl H-C 2008 Quantum gas of deeply bound ground state molecules *Science* 321 1062
- [14] Danzl J G, Mark M J, Haller E, Gustavsson M, Hart R, Aldegunde J, Hutson J M and Nägerl H-C 2010 An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice *Nat. Phys.* 6 265
- [15] Ni K-K, Ospelkaus S, de Miranda M H G, Pe'er A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S and Ye J 2008 *Science* 322 231
- [16] Takekoshi T, Reichsöllner L, Schindewolf A, Hutson J M, Le Sueur C R, Dulieu O, Ferlaino F, Grimm R and Nägerl H-C 2014 Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state *Phys. Rev. Lett.* **113** 205301

- [17] Molony P K, Gregory P D, Ji Z, Lu B, Köppinger M P, Le Sueur C R, Blackley C L, Hutson J M and Cornish S L 2014 Creation of ultracold ⁸⁷Rb¹³³Cs molecules in the rovibrational ground state *Phys. Rev. Lett.* **113** 255301
- [18] Park J W, Will S A and Zwierlein M W 2015 Ultracold dipolar gas of fermionic ²³Na⁴⁰K molecules in their absolute ground state *Phys. Rev. Lett.* **114** 205302
- [19] Moses S A, Covey J P, Miecnikowski M T, Yan B, Gadway B, Ye J and Jin D S 2015 Creation of a low-entropy quantum gas of polar molecules in an optical lattice *Science* 350 659
- [20] Reichsöllner L, Schindewolf A, Takekoshi T, Grimm R and Nägerl H-C 2017 Quantum engineering of a low-entropy gas of heteronuclear bosonic molecules in an optical lattice *Phys. Rev. Lett.* **118** 073201
- [21] De Marco L, Valtolina G, Matsuda K, Tobias W G, Covey J P and Ye J 2019 A degenerate Fermi gas of polar molecules *Science* 363 853
- [22] ACME Collaboration 2018 Improved limit on the electric dipole moment of the electron *Nature* 562 355
- [23] Panda C D *et al* 2016 Stimulated Raman adiabatic passage preparation of a coherent superposition of ThO $H^3\Delta_1$ states for an improved electron electric-dipole-moment measurement *Phys. Rev.* A **93** 1
- [24] Pospelov M and Ritz A 2014 CKM benchmarks for electron electric dipole moment experiments *Phys. Rev.* D 89 1
- [25] Engel J, Ramsey-Musolf M J and van Kolck U 2013 Electric dipole moments of nucleons, nuclei, and atoms: the Standard Model and beyond *Prog. Part. Nucl. Phys.* **71** 21
- [26] Nakai Y and Reece M 2017 Electric dipole moments in natural supersymmetry J. High Energy Phys. 8 1
- [27] Khriplovich I B and Lamoreaux S K 1997 *CP Violation Without Strangeness* (Berlin: Springer)
- [28] Baron J et al 2014 Order of magnitude smaller limit on the electric dipole moment of the electron Science 343 269
- [29] Denis M and Fleig T 2016 In search of discrete symmetry violations beyond the standard model: Thorium monoxide reloaded J. Chem. Phys. 145 21
- [30] Skripnikov L V 2016 Combined 4-component and relativistic pseudopotential study of ThO for the electron electric dipole moment search J. Chem. Phys. 145 21
- [31] Quack M 1989 Structure and dynamics of chiral molecules Angew. Chem. Intl. Ed. Engl. 28 571–86
- [32] Quack M 2002 How important is parity violation for molecular and biomolecular chirality? *Angew. Chem. Intl. Ed. Engl.* **41** 4618–30
- [33] Quack M 2011 Fundamental symmetries and symmetry violations from high resolution spectroscopy *Handbook of High Resolution Spectroscopy* ed M Quack and F Merkt (New York: Wiley) 659–722
- [34] Quack M 2015 On biomolecular homochirality as a quasifossil of the evolution of life *Adv. Chem. Phys.* 157 249–90
- [35] Quack M 1986 On the measurement of the parity violating energy difference between enantiomers *Chem. Phys. Lett.* 132 147–53
- [36] Dietiker P, Miloglyadov E, Quack M, Schneider A and Seyfang G 2015 Infrared laser induced population transfer and parity selection in ¹⁴NH₃: A proof of principle experiment towards parity violation in chiral molecules *J. Chem. Phys.* **143** 244305
- [37] Prentner R, Quack M, Stohner J and Willeke M 2015 Wavepacket dynamics of the axially chiral molecule ClOOCl under coherent radiative excitation and including electroweak parity violation *J. Phys. Chem.* A 119 12805–22
- [38] Gaubatz U, Rudecki P, Schieman S and Bergmann K 1990 Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser

fields. A concept and experimental results J. Chem. Phys. 92 5363–76

- [39] Albert S, Bolotova I, Chen Z, Fabri C, Horny L, Quack M, Seyfang G and Zindel D 2016 High Resolution GHz and THz (FTIR) spectroscopy and theory of parity violation and tunneling for 1,2-dithiine (C₄H₄S₂) as a candidate for measuring the parity violating energy difference between enantiomers of chiral molecules *Phys. Chem. Chem. Phys.* 18 21976–93
- [40] Albert S, Bolotova I, Chen Z, Fabri C, Quack M, Seyfang G and Zindel D 2017 High-resolution FTIR spectroscopy of trisulfane HSSSH: A candidate for detecting parity violation in chiral molecules *Phys. Chem. Chem. Phys.* **19** 11738–43
- [41] Ni K K, Ospelkaus S, de Miranda M H G, Pe'er A, Neyenhuis B, Zirbel J J, Kotochigova S, Jin D S and Ye J 2008 A high phase space density gas of polar molecules *Science* 322 231–5
- [42] Lang F, Winkler K, Strauss C, Grimm R and Hecker-Denschlag J 2008 Ultracold triplet molecules in the rovibrational ground state *Phys. Rev. Lett.* **101** 133005
- [43] De Marco L, Valtolina G, Matsuda K, Tobias W G, Covey J P and Ye J 2019 A degenerate Fermi gas of polar molecules *Science* 363 853–56
- [44] Ospelkaus S, Ni K K, Wang D, de Miranda M H G, Neyenhuis B, Quéméner G, Julienne P S, Bohn J L, Jin D S and Ye J 2010 Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules *Science* 327 853–7
- [45] Ni K K, Ospelkaus S, Wang D, Quéméner G, Neyenhuis B, de Miranda M H G, Bohn J L, Ye J and Jin D S 2010 Dipolar collisions of polar molecules in the quantum regime *Nature* 464 1324
- [46] de Miranda M H G, Chotia A, Neyenhuis B, Wang D, Quéméner G, Ospelkaus S, Bohn J L, Ye J and Jin D S 2011 Controlling the quantum stereodynamics of ultracold bimolecular reactions *Nat. Phys.* 7 502
- [47] Wolf J, Deiß M, Krükow A, Tiemann E, Ruzic B P, Wang Y, D'Incao J P, Julienne P S and Hecker-Denschlag J 2017 State-to-state chemistry for three-body recombination in an ultracold rubidium gas *Science* 358 921
- [48] Bui T Q, Bjork B J, Changala B P, Nguyen T L, Stanton J F, Okumura M and Ye J 2018 Direct measurements of DOCO isomers in the kinetics of OD + CO Science Advances 4 eaao4777
- [49] Kuhn A, Hennrich M, Bondo T and Rempe G 1999
 Controlled generation of single photons from a strongly coupled atomcavity system *Appl. Phys.* B 69 373–7
 Kuhn A, Hennrich M and Rempe G 2002 Deterministic single-
- photon source for distributed quantum networking *Phys. Rev. Lett.* **89** 067901
- [50] Jaynes E T and Cummings F W 1963 Comparison of quantum and semiclassical radiation theories with application to the beam maser *Proc. IEEE* 51 89–109
- [51] Vasilev G S, Ljunggren D and Kuhn A 2010 Single photons made-to-measure New J. Phys. 12 063024
 - Nisbet-Jones P B R, Dilley J, Ljunggren D and Kuhn A 2011 Highly efficient source for indistinguishable single photons of controlled shape *ibid.* **13** 103036
- [52] Nisbet-Jones P B R, Dilley J, Holleczek A, Barter O and Kuhn A 2013 Photonic qubits, qutrits and ququads accurately prepared and delivered on demand *New J. Phys.* 15 053007
- [53] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Quantum state transfer and entanglement distribution among distant nodes in a quantum network *Phys. Rev. Lett.* 78 3221–4

- [54] Dilley J, Nisbet-Jones P, Shore B W and Kuhn A 2012 Singlephoton absorption in coupled atom-cavity systems *Phys. Rev.* A 85 023834
- [55] Specht H P, Nölleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S and Rempe G 2011 A single-atom quantum memory *Nature* 473
- [56] Giannelli L, Schmit T, Calarco T, Koch C P, Ritter S and Morigi G 2018 Optimal storage of a single photon by a single intracavity atom *New J. Phys.* 20 105009
- [57] Holleczek A et al 2016 Quantum logic with cavity photons from single atoms Phys. Rev. Lett. 117 023602
- [58] Pechal M, Huthmacher L, Eichler C, Zeytinoğlu S, Abdumalikov A A, Berger S, Wallraff A and Filipp S 2014 Microwavecontrolled generation of shaped single photons in circuit quantum electrodynamics *Phys. Rev.* X 4 041010
- [59] Longhi S 2009 Quantum-optical analogies using photonic structures Laser & Photon Rev. 3 243–61
- [60] Longhi S, Della Valle G, Ornigotti M and Laporta P 2007 Coherent tunneling by adiabatic passage in an optical waveguide system *Phys. Rev.* B 76 201101
- [61] Lahini Y, Pozzi F, Sorel M, Morandotti R, Christodoulides D N and Silberberg Y 2008 Effect of nonlinearity on adiabatic evolution of light *Phys. Rev. Lett.* 101 193901
- [62] Dreisow F, Szameit A, Heinrich M, Keil R, Nolte S, Tünnermann A and Longhi S 2009 Adiabatic transfer of light via a continuum in optical waveguides *Opt. Lett.* 34 2405–7
- [63] Dreisow F, Ornigotti M, Szameit A, Heinrich M, Keil R, Nolte S, Tünnermann A and Longhi S 2009 Polychromatic beam splitting by fractional stimulated Raman adiabatic passage Appl. Phys. Lett. 95 261102
- [64] Menchon-Enrich R, Llobera A, Vila-Planas J, Cadarso V J, Mompart J and Ahufinger V 2013 Light: Science & Appl 2 e90
- [65] Wu C W, Solntsev A S, Neshev D N and Sukhorukov A A 2014 Photon pair generation and pump filtering in nonlinear adiabatic waveguiding structures *Opt. Lett.* **39** 953–6
- [66] Mrejen M, Suchowski H, Hatakeyama T, Wu1 C, Feng L, O'Brien K, Wang Y and Zhang X 2015 Adiabatic elimination-based coupling control in densely packed subwavelength waveguides *Nature Commun* 6 7565
- [67] Torosov B T, Della Valle G and Longhi S 2013 Non-Hermitian shortcut to adiabaticity Phys. Rev. A 87 052502
- [68] Doppler J, Mailybaev A A, Böhm J, Kuhl U, Girschik A, Libisch F, Milburn T J, Rabl P, Moiseyev N and Rotter S 2016 Dynamically encircling exceptional points in a waveguide: asymmetric mode switching from the breakdown of adiabaticity *Nature* 537 76
- [69] Longhi S 2006 Optical realization of multilevel adiabatic population transfer in curved waveguide arrays *Phys Lett* A 239 166–70
- [70] Chumak A V, Vasyuchka V, Serga A A and Hillebrands B 2015 Magnon spintronics *Nat. Phys.* 11 453–61
- [71] Lenk B, Ulrichs H, Garbs F and Münzenberg M 2011 The building blocks of magnonics *Phys. Rep.* 507 107
- [72] Sander D *et al* 2017 The 2017 magnetism roadmap J. Phys. D: Appl. Phys. **50** 363001
- [73] Vogel M, Chumak A V, Waller E H, Langner T, Vasyuchka V I, Hillebrands B and von Freymann G 2015 Optically reconfigurable magnetic materials *Nat. Phys.* 11 487
- [74] Wang Q, Pirro P, Verba R, Slavin A, Hillebrands B and Chumak A V 2018 Reconfigurable nanoscale spin-wave directional coupler *Science Advances* 4 e1701517
- [75] Chumak A V, Tiberkevich V S, Karenowska A D, Serga A A, Gregg J F, Slavin A and Hillebrands B 2010 All-linear time reversal by a dynamic artificial crystal *Nat. Commun.* 1 141