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A procedure is investigated for assigning physically transparent, approximate vibrational and
rotational quantum labels to variationally computed eigenstates. Pure vibrational wave functions are
analyzed by means of normal-mode decomposition �NMD� tables constructed from overlap
integrals with respect to separable harmonic oscillator basis functions. Complementary rotational
labels JKaKc

are determined from rigid-rotor decomposition �RRD� tables formed by projecting
rotational-vibrational wave functions �J�0� onto products of symmetrized rigid-rotor basis
functions and previously computed �J=0� vibrational eigenstates. Variational results for H2O,
HNCO, trans-HCOD, NCCO, and H2CCO are presented to demonstrate the NMD and RRD
schemes. The NMD analysis highlights several resonances at low energies that cause strong mixing
and cloud the assignment of fundamental vibrations, even in such simple molecules. As the
vibrational energy increases, the NMD scheme documents and quantifies the breakdown of the
normal-mode model. The RRD procedure proves effective in providing unambiguous rotational
assignments for the chosen test molecules up to moderate J values. © 2010 American Institute of
Physics. �doi:10.1063/1.3451075�

I. INTRODUCTION

During the past decade, remarkable progress has been
achieved in the development of “numerically exact” varia-
tional methods for computing rotational-vibrational eigen-
states of polyatomic molecules.1–9 Notwithstanding the im-
proved capabilities for converging on energy levels, the
assignment and interpretation of the multitudinous resulting
wave functions, especially at higher energies, remains a
challenge.10–13 The problem is often exacerbated by the use
of sophisticated basis sets and coordinate representations.
While an unambiguous labeling of molecular rovibrational
states is helpful in the physical interpretation of measured
spectra, it is required for the construction of spectroscopic
databases.14–16 Different investigations often employ differ-
ent labels for the same quantum states or spectroscopic tran-
sitions, confounding efforts to compile self-consistent data-
bases.

An ideal labeling scheme would be physically incisive
and independent of the coordinates and basis functions used
to represent the Hamiltonian and the wave function. How-
ever, assignment schemes can be very useful even if these
requirements are not fully met. Among the techniques that
have been employed in the analyses of variationally com-
puted nuclear-motion wave functions are “node counting”
along specified cuts of coordinate space,17,18 the determina-

tion of “optimally separable” coordinates,10,19–28 the use of
natural modal representations,18,29 and the evaluation of co-
ordinate expectation values.17 An alternative approach to as-
signing molecular eigenstates is provided by effective
Hamiltonian methods, particularly in relatively low-energy
regions.

The canonical models of the vibrations and rotations of a
molecule are the quantum mechanical harmonic oscillator
�HO� �Ref. 30� and rigid-rotor �RR� �Ref. 31� approxima-
tions, respectively. The low-lying states of semirigid mol-
ecules have traditionally been described by labels based on
multidimensional normal-mode vibrational wave functions
conjoined with RR rotational wave functions represented in a
symmetric-top basis. A widespread preference for RRHO la-
bels persists both for the appealing simplicity of the under-
lying models and for historical reasons. Of course, the
RRHO labeling scheme is inherently model dependent, un-
like methods based on natural modals, for example. Varia-
tional vibrational computations have often3,32–45 employed
the Eckart–Watson Hamiltonian expressed in normal
coordinates,46–48 which leads straightforwardly to a HO la-
beling of the lower-lying eigenstates. During the more than
30-year development of variational nuclear motion computa-
tions with exact kinetic energy operators, the emphasis has
gradually shifted away from the Eckart–Watson Hamiltonian
to Hamiltonians expressed in internal coordinates.2,4–9,18,49–53

Nevertheless, for molecular systems of medium size �more
than four atoms but less than eight�, a special role will bea�Electronic mail: csaszar@chem.elte.hu.
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maintained for the Eckart–Watson Hamiltonian, perhaps ex-
pressed in a discrete variable representation �DVR�,54–57 us-
ing potential energy functions given in internal coordinates
and a multidimensional HO basis.

This paper presents an easily automated protocol for la-
beling variational rovibrational wave functions by construct-
ing certain standardized types of normal-mode decomposi-
tion �NMD� and rigid-rotor decomposition �RRD� tables.
The NMD labeling scheme formalizes normal-mode repre-
sentations that have long been in use for variational vibra-
tional wave functions but have been underutilized for quan-
titative assignments. Our RRD approach is more novel, and
it is amenable to rovibrational computations using any set of
vibrational coordinates. The NMD and RRD procedures are
demonstrated here by variational rovibrational computations
for the H2O, HNCO, trans-HCOD, NCCO, and H2CCO mol-
ecules.

II. ROTATIONAL-VIBRATIONAL LABELING
PROTOCOL

The rotational-vibrational labeling protocol leading to
NMD and RRD tables was implemented in our own nuclear
motion program system called DEWE.3 DEWE employs a
DVR54,56 of the complete Eckart–Watson Hamiltonian,46–48 a
basis set composed of Hermite-DVR functions,55,58 and a full
potential energy surface �PES� expressed in arbitrary coordi-
nates. DEWE computes the required eigenvalues and eigen-
functions iteratively.59,60 The vibrational part of the DEWE

program is described in detail in Ref. 3. The treatment has
been extended during the present work to include rotations as
well.

Let us consider the nJth rovibrational wave function
�nJ

J �Q ,� ,� ,�� as a linear combination of rotational-
vibrational basis functions,

�nJ

J �Q,�,�,�� = �
i=1

N

�
L=1

2J+1

cnJ,iL
J �i�Q�RL

J��,�,�� , �1�

where �� ,� ,�� is the usual set of Euler angles, Q
= �Q1 ,Q2 , . . . ,Q3M−6� denotes the normal coordinates of an
M-atomic molecule, J is the rotational quantum number, and
RL

J�� ,� ,�� denotes the Wang-transformed symmetric-top ro-
tational basis functions31 indexed by L. The vibrational basis
functions �i�Q� are assumed to be products of one-
dimensional functions in each vibrational degree of freedom,
and N=N1N2¯N3M−6 is the total size of the multidimen-
sional vibrational basis.

A. Normal-mode decomposition of vibrations

A pure vibrational state �m�Q� �J=0� can be described
as a linear combination of product functions of HOs,

�m�Q� = �
i=1

N

Cm,i�i
HO�Q� . �2�

Due to the normalization of the wave function and the ortho-
normality of the basis functions, �i=1

N �Cm,i�2=1 and one can
write

Cm,i = ��i
HO��m	Q. �3�

The �Cm,i�2 coefficients are, from now on, referred to as the
elements of the NMD table.

The labeling of “exact” vibrational wave functions
�m�Q� with HO quantum numbers can be accomplished by
picking out the dominant contributors in Eq. �2�, which can
be read directly from a NMD table. This simplification is
similar in spirit to that employed during potential energy
distribution, kinetic energy distribution, or total energy dis-
tribution analyses61–66 of harmonic vibrations executed
within the GF formalism30 to describe normal modes via
internal coordinates.

The quantum analog67 of the Kolmogorov–Arnold–
Moser68 theorem provides the basis for assigning quantum
numbers via separability approximations, like the normal-
mode model. A NMD coefficient larger than 0.5 means a
close similarity of the exact, nonseparable wave function to
that provided by the separable HO Hamiltonian. A smaller
coefficient does not mean that no good approximate quantum
numbers can be found—it simply means that the HO ap-
proximation may not provide the best separation. This study
is not concerned with searching for better separations than
provided by the HO approximation ubiquitous in molecular
spectroscopy.

Obviously, it would be advantageous to be able to pro-
duce NMDs from arbitrary wave functions represented with
arbitrary basis functions and coordinates. In general, the in-
tegral given in Eq. �3� might be computed by numerical
quadratures as

Cm,i = �
j

wj�i
HO�� j��m�� j� , �4�

where wj and � j are appropriately chosen quadrature weights
and points, respectively, in the multidimensional space, and
real-valued functions are assumed. However, if the varia-
tional wave functions are computed by programs built upon
the use of internal coordinates, the computation of NMDs is
hindered considerably as the internal coordinate and the HO
wave functions whose overlap must be computed are based
on different ranges and volume elements. Computation of
NMDs is not at all simple in this case, and singularities
which might arise in the Jacobi determinant could provide
further difficulties.

B. Assignment and rigid-rotor decomposition of
rotations

For the eigenstates of the field-free rovibrational Hamil-
tonian, the J rotational quantum number is exact, while the
widely used Ka and Kc labels are approximate and corre-
spond to �K� for the prolate and oblate symmetric-top limits
of the RR,31 respectively. In the present subsection a two-
step algorithm based on certain nonstandard overlap integrals
is proposed to match the computed rovibrational states with
pure vibrational states and then generate the Ka and Kc la-
bels.

By rearranging Eq. �1�, one obtains
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�nJ

J �Q,�,�,�� = �
L=1

2J+1

RL
J��,�,��
�

i=1

N

cnJ,iL
J �i�Q��

= �
L=1

2J+1

RL
J��,�,���nJL

J �Q� . �5�

From now on, �nJL
J �Q� will be referred to as the Lth vibra-

tional part of �nJ

J �Q ,� ,� ,��. Because the eigenfunctions of
the rotational-vibrational Hamiltonian are orthonormal, the
overlap of a vibration-only wave function �m�Q� and a rovi-
brational wave function �nJ

J �Q ,� ,� ,�� �J�0� is always
zero, and thus not useful for making assignments. A way to
circumvent this problem is to introduce the overlap of the
Lth vibrational part of �nJ

J �Q ,� ,� ,�� and the vibration-only
�m�Q� as

SnJL,m
J = ��nJL

J �Q���m�Q�	Q

= �
i=1

N

�
j=1

N

cnJ,iL
J Cm,j��i�Q��� j�Q�	Q

= �
i=1

N

cnJ,iL
J Cm,i, �6�

where the integration is carried out over the 3M−6 vibra-
tional coordinates, and an orthonormal vibrational basis and
real linear combination coefficients are assumed. SnJL,m

J pro-
vides a measure of the similarity of �nJL

J �Q� and �m�Q�: the
larger the magnitude of SnJL,m

J , the more similar the vibra-
tional parts of the two functions are. The next step is to sum
the absolute squares of the SnJL,m

J quantities with respect to L,

PnJ,m
J = �

L=1

2J+1

�SnJL,m
J �2 = �

L=1

2J+1 ��
i=1

N

cnJ,iL
J Cm,i�2

. �7�

After converging M J=0 and NJ J�0 eigenstates by
variational procedures, NJM square-overlap sums are com-
puted over all of the J=0 and J�0 pairs. The quantities
PnJ,m

J �nJ=1,2 , . . . ,NJ and m=1,2 , . . . ,M� can be regarded
as elements of a rectangular matrix with NJ rows and M
columns. For a given J, those �2J+1� �nJ

J �Q ,� ,� ,�� rovi-
brational states belong to a selected �m�Q� pure vibrational
state which give the 2J+1 largest PnJ,m

J values. This means of
identification is valuable because the rovibrational levels be-
longing to a given vibrational state appear neither consecu-
tively nor in a predictable manner in the overall eigenspec-
trum.

It is important to emphasize the pronounced dependence
of the quantities PnJ,m

J on the embedding of the body-fixed
frame, as exhibited in Eqs. �5� and �7�. The DEWE code em-
ploys the Eckart frame,46 which is expected to be a trenchant
choice for the overlap calculations due to a minimalized
rovibrational coupling. Of course, this rotational labeling
scheme can be extended to other variational rovibrational
approaches employing arbitrary internal coordinates and em-
beddings.

After assigning 2J+1 rovibrational levels to a pure vi-
brational state, the next step is to generate the Ka and Kc or

	=Ka−Kc labels. Such assignments could be naively based
on the canonical energy stacking of asymmetric-top JKaKc
states, derived from the symmetric-top limits, the symmetry
labels of the states, and the noncrossing rule.31 A rigorous
approach is to set up what we call RRD tables. The two
approaches do not necessarily give the same labels, although
this problem occurred in only one case during the present
study investigating low-J states. In order to compute the
RRD coefficients it is necessary to evaluate the overlap inte-
gral

SnJ,m,mJ

J = ��nJ

J �Q,�,�,����m�Q� · 
mJ

J ��,�,��	Q,�,�,�

= �
L=1

2J+1

�
i=1

N

cnJ,iL
J �

M=1

2J+1

�
k=1

N

Cm,k · CmJ,M
J · ��i�Q���k�Q�	Q

· �RL
J��,�,���RM

J ��,�,��	�,�,�

= �
L=1

2J+1

�
i=1

N

cnJ,iL
J · Cm,i · CmJ,L

J �8�

between the nJth rovibrational state and the product of the
mth vibrational state and mJth RR eigenfunction. The RR
component of the product is given by a linear combination of
the Wang functions RL

J with expansion coefficients CmJ,L
J ,


mJ

J ��,�,�� = �
L=1

2J+1

CmJ,L
J RL

J��,�,�� . �9�

Note that the notation employed does not restrict the sum-
mation by symmetry; thus, certain blocks of the CmJ,L

J coef-
ficients will necessarily be zero. Recognizing that these co-
efficients are elements of a unitary matrix, the quantities in
Eqs. �7� and �8� are connected by the condition

PnJ,m
J = �

mJ=1

2J+1

�SnJ,m,mJ

J �2. �10�

Because the �m�Q� ·
mJ

J �� ,� ,�� functions form an orthonor-
mal basis of dimension N�2J+1�, it is also obvious that

�
m=1

N

�PnJ,m
J �2 = 1. �11�

In light of these relationships, we define the RRD coeffi-
cients as the absolute square of the overlaps �SnJ,m,mJ

J �2, and
arrange them in a rectangular table whose rows are the exact
states under consideration, �nJ

J �Q ,� ,� ,��, and whose
columns are the above-defined “basis” states,
�m�Q�
mJ

J �� ,� ,��.

III. NUMERICAL EXAMPLES

After developing eigenstate labeling capabilities into our
code DEWE, applicable to semirigid molecules of arbitrary
size, the utility of the proposed NMD and RRD protocols
was investigated for examples of three-, four-, and five-
atomic molecules—H2O, HNCO, trans-HCOD, NCCO, and
H2CCO. Important details of the calculations performed and
definition of the normal coordinates for all the species inves-
tigated, including the appropriate transformation matrices
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and reference structures, are given in the supplementary
material.69

A. Normal-mode decomposition tables

1. NMD of water

Assigning the large number of computed �and measured�
rovibrational states of water up to its first dissociation limit is
an extremely demanding task.17 Without valid assignments,
however, there is no hope of extending the information sys-
tems characterizing water spectroscopy beyond what is avail-
able at present.14

Our NMD analysis of H2
16O �Table I� is based on the

PES of Refs. 70 and 71. All of the vibrational eigenstates up
to 7000 cm−1, including the fundamentals,72 are described
accurately by the normal-mode model. The concept of
polyads12 and the polyad number P, defined here as P
=2�v1+v3�+v2, have often been used to analyze the vibra-
tional states of water �see, e.g., Ref. 73�. Large NMD coef-
ficients ��97%� are found for the ground state �P=0� and
the bending fundamental �P=1�, both one-dimensional
blocks. For the three-dimensional P=2 manifold ��2−�4�,
the strongest mixing occurs outside the polyad block; n.b.

2�1 and �1+�3 contribute 10% and 9% to �3 and �4, re-
spectively. This mixing would likely be diminished in a natu-
ral modal representation. Unlike the P=2 case, the largest
mixings for the P=3 states ��5−�7� are found within the
polyad block, in accord with the usual polyad arguments.
Among the P=4 states ��8−�13�, �11 is the most strongly
mixed, the largest components therein being 2�1�48%� and
�1�11%�. In fact, none of the diagonal NMD values for �11,
�12, and �13 exceeds 70%, indicating that the normal-mode
picture has already started to break down for the purely
stretching part of the P=4 polyad. Thus, the NMD analysis
nicely documents the anticipated transformation from
normal-mode to local-mode behavior. Finally, we note that
the NMD values in Table I are in full agreement with the
coefficients in Eq. �33� of Whitehead and Handy,33 despite
the use of completely different PESs in the two studies. Such
NMD transferability across PESs and computational method-
ologies is a merit for interpreting vibrational spectra.

Overall, as compared to later examples, for the low-
energy states considered H2

16O provides a well-behaved ex-
ample for the NMD analysis, supported also by the fact that
the frequency order of the exact states corresponds to that of
the harmonic basis states. For higher energies, above about

TABLE I. The lowest-energy part of the NMD table of H2
16O.

aRows of variational vibrational wave functions ��i� with energy levels 
 are decomposed in terms of columns of HO basis states with reference energy levels
�. NMD coefficients in percent; energies in cm−1 relative to the corresponding variational or harmonic zero-point vibrational �ZPV� level appearing in row
1 or column 1, respectively.
bThe decomposition was extended to 80 states in each row and column; � values denote the corresponding sums of the NMD coefficients over these states.
Computed from the CVRQD PES of Refs. 70 and 71. Twenty basis functions were used for each vibrational degree of freedom. The nuclear masses mH

=1.007 276 5 u and m16O=15.990 526 u were adopted.
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12 000 cm−1,17 mixing of the basis states becomes so pro-
nounced that the normal-mode labels lose any simple physi-
cal meaning. Nevertheless, the quantitative characterization
provided by the NMD array remains useful in uniquely iden-
tifying vibrational eigenstates derived from diverse sources.

2. NMD of tetra-atomic molecules

Application of the NMD procedure to three tetra-atomic
test cases, HNCO, trans-HCOD, and NCCO, provides the
arrays in Tables II–IV. Technical details related to the chosen
PESs are given in supplementary material.69 Isocyanic acid
�HNCO� is a classic quasilinear molecule whose spectros-
copy has been extensively studied and whose anharmonic
force field was first computed by one of us in Ref. 74. The
NCCO, trans-HCOH, and trans-HCOD molecules have re-
cently been isolated and characterized for the first time, aided
by selected NMD data we have previously reported.75,76 The
examples collected in this section show that strong mixing of
normal-mode wave functions at low vibrational energies is
not a rare exception, even for fundamentals. Interestingly, the
mixing can become so strong that the very notion of a fun-
damental vibrational state becomes ill defined. Besides its
theoretical delicacy, this behavior has practical conse-
quences. For instance, the strong mixing is manifested in the
distorted intensity pattern in the case of the 14N13C12C16O
isotopologue �Table IV, vide infra�.76

The NMD array for HNCO �Table II� includes the 12
wave functions lying below 1750 cm−1 in relative energy.
Seven of these wave functions have leading NMD values of
�80%. In particular, the �
5 ,
6 ,
4� bending fundamentals
��1−�3� at �577,659,777� cm−1 have diagonal NMD coef-
ficients of �94, 99, 89�%, respectively, making these assign-
ments very clear. Likewise, the �2
5 ,
5+
6 ,
4+
6� bending
overtone and combination levels ��4 ,�6 ,�9� at
�1143,1271,1473� cm−1 have diagonal NMD elements of
�80, 90, 88�%, in order. In stark contrast, the states
��5 ,�7 ,�8� lying at �1263,1325,1354� cm−1 involve a
strong Fermi resonance triad of the 2�6, �3, and �4+�5

basis states. It is striking how ambiguous the identification of
the 
3 symmetric N–C–O stretching fundamental is, as the
�3 basis state is the largest contributor to both �5 and �7.
The best assignments for ��7 ,�8� would appear to be
�
3 ,2
6�, with contributions from the ��3 ,2�6� basis func-
tions of �46, 59�%, respectively. However, the only remain-
ing possibility for 
4+
5 would then become �5, and the
�4+�5 NMD coefficient for this wave function is only 22%,
which is third largest in the list. In brief, an intricate structure
is revealed for the vibrational eigenstates of HNCO in the
mid-IR region that would be poorly understood without
NMD as a quantitative tool.

For deuterated trans-hydroxymethylene (trans-HCOD�,
NMD data are reported in Table III for a total of 21 vibra-
tional wave functions lying below 2900 cm−1 in relative en-

TABLE II. The lowest-energy part of the NMD table of HNCO.

aSee footnote a to Table I.
bObtained with an all-electron CCSD�T�/cc-pCV5Z quartic internal coordinate force field taken from Ref. 78. Seven basis functions were used for each
vibrational degree of freedom. The decomposition was extended to 100 states in each row and column; � values denote the corresponding sums of the NMD
coefficients over these states. Atomic masses, in u, mH=1.007 825, m14N=14.003 074, m12C=12, and m16O=15.994 915 were adopted.
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ergy. The first 12 wave functions, including those for the
fundamental levels 
3, 
4, 
5, and 
6, have dominant diago-
nal NMD values ��90%�. Thus, all vibrational states lying
below 2400 cm−1 are remarkably well described by the
normal-mode picture. In contrast, the higher vibrational
states appearing in Table III show substantial mixing in the
NMD array. For �13 at 2627 cm−1, �2 contributes 83%,
which is still sufficient to clearly identify this state as the 
2

�OuD stretch� fundamental. However, in attempting to as-
sign the remaining fundamental �
1�, we find that �15 at
2683 cm−1 is 45% �1+37% ��3 + �4�, whereas �17 at
2730 cm−1 is 33% �1+51% ��3 + �4�. These NMD data
reveal that the CuH stretching fundamental is in strong
Fermi resonance with a combination level involving the
HuCuO bending and CuO stretching vibrations. While
the best assignment for 
1 �CuH stretch� is 2683 cm−1, one
must accept that the corresponding wave function �15 con-
tains less than 50% of this vibrational character.

The NMD results for the 14N13C12C16O isotopologue of
the carbonyl cyanide radical are given in Table IV for the
lowest 16 vibrational wave functions, all lying below
950 cm−1 in relative energy. The CwN and CvO stretch-
ing fundamentals, 
1�a��=2170 cm−1 and 
2�a��
=1853 cm−1, respectively, that were computed in our earlier
study,76 lie outside the energy region considered in Table IV.
Large diagonal NMD coefficients ��95%� allow the 
5�a��,

6�a��, and 
4�a�� bending fundamentals to be readily as-
signed to wave functions �1, �2, and �6 at 219, 262, and
567 cm−1, respectively. Nonetheless, identification of the re-
maining CuC stretching fundamental �
3�a��� suffers from
the same type of ambiguity seen above for HNCO and trans-
HCOD. In particular, �10 at 777 cm−1 and �12 at 795 cm−1

exhibit a strong Fermi resonance between �3 and the com-
bination level �4+�5. The apparent CuC stretching funda-
mental is �12, if assigned on the basis of the 55% �3 contri-
bution. However, this choice would mean that the CuC

TABLE III. The lowest-energy part of the NMD table of trans-HCOD.

aSee footnote a to Table I.
bObtained with the all-electron CCSD�T�/cc-pCVQZ quartic internal coordinate force field taken from Ref. 75. Nine basis functions were used for each
vibrational degree of freedom. The decomposition was extended to 40 states in each row and column; � values denote the corresponding sums of the NMD
coefficients over these states. Atomic masses, in u, mH=1.007 825, mD=2.014 102, m12C=12, and m16O=15.994 915 were adopted.
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stretch in 14N13C12C16O is shifted +9.1 cm−1 relative to the
corresponding wavenumber in the parent isotopologue. In
other words, a counterintuitive blueshift occurs upon substi-
tution of a heavier carbon isotope, as discussed in Ref. 76,
illustrating the intricacies that Fermi resonances can engen-
der. The strong mixing also manifests itself in the computed
“intensity stealing” between �10 and �12, as documented in
Table IV.

3. NMD of ketene

In previous years the five-atomic ketene molecule
�H2CCO� was too large for adequate variational nuclear mo-
tion treatments. This proved to be quite unfortunate because
ketene exhibits several peculiar spectroscopic features, as
summarized in Refs. 79–81. Some of the complexities in the
lower end of the high-resolution rovibrational spectrum of
ketene arise because the three lowest fundamentals cluster in
the 430–610 cm−1 region and the next two fundamentals
occur in the 960–1120 cm−1 window. Understanding the en-
suing resonances, assigning their spectral signatures, and
treating them with theoretical techniques encounter severe

difficulties. Thus, it is no surprise that “the rich history of
infrared and microwave studies of the ketene molecule is a
microcosm of the development of modern spectroscopy”
�Ref. 79�. The NMD and RRD tables generated in this study
serve well the purpose of unraveling the complex spectros-
copy of this simple molecule.

Table V presents the NMD table of ketene for vibrational
states up to 1520 cm−1 in relative energy. The underlying
variational computations are based on the local PES of Ref.
79. The vibrational states up to 1050 cm−1 exhibit little mix-
ing and have dominant NMD coefficients of �91%. How-
ever, most of the states in the 1050–1550 cm−1 window
have much smaller leading NMD coefficients due to anhar-
monic resonances. The wave functions ��8 ,�9 ,�10,�11� ly-
ing at �1071,1113,1169,1211� cm−1 involve a complicated
�2�6 ,�5+�6 ,�4 ,2�5� Fermi resonance tetrad that clouds
the assignment of the CvC stretching fundamental �
4�. A
striking manifestation is that the �5+�6 basis state contrib-
utes between 12% and 45% to all variational wave functions
in the set ��8−�11�. Our current NMD results differ substan-
tially from the more approximate coefficients extracted in

TABLE IV. The lowest-energy part of the NMD table of 14N13C12C16O.

aSee footnote a to Table I.
bObtained with the all-electron ROCCSD�T�/cc-pCVQZ quartic internal coordinate force field taken from Refs. 76 and 77. Nine basis functions were used for
each vibrational degree of freedom. The decomposition was extended to 160 states in each row and column; � values denote the corresponding sums of the
NMD coefficients over these states. Atomic masses, in u, m14N=14.003 074, m13C=13.003 355, m12C=12, and m16O=15.994 915 were adopted.
cVibrational intensities corresponding to excitations from the ZPV level, I /km mol−1, were obtained with the DEWE program and an AE-ROCCSD�T�/
cc-pCVTZ third-order dipole field �Ref. 76�.
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Ref. 79, attesting to the intricacies of the vibrational mixing
in this region. Nevertheless, both studies concur in the as-
signment of the experimental band82 at 1116.0 cm−1 to the

4 fundamental. The 
3 �CH2 scissoring� fundamental is also
strongly mixed, in this case due to a resonance between
��4 ,�8+�9� basis states, which contribute �43%, 50%� and
�50%, 45%� to ��13,�15�, respectively. Therefore, the ketene
molecule provides multiple examples in which the assign-
ment of vibrational fundamentals is blurred. A much more
detailed discussion of our variational vibrational computa-
tions on ketene will be presented in a forthcoming paper.

B. Rigid-rotor decomposition tables

According to the protocol of Sec. II B, the vibrational
part of a rovibrational wave function �nJ

J can be character-
ized by computing the quantities PnJ,m

J of Eq. �7� derived
from overlap integrals with pure vibrational wave functions
�m. In addition, a RRD of �nJ

J is provided by the coefficients
�SnJ,m,mJ

J �2, where SnJ,m,mJ

J is the overlap defined in Eq. �8�.

Tables of RRD coefficients lead directly to KaKc labels for
asymmetric tops. Overall, our protocol for variational com-
putations assigns 2J+1 clearly labeled rovibrational levels to
each of the pure �J=0� vibrational states.

In our scheme the complete rovibrational label includes
the irreducible representation �irrep� � of the molecular sym-
metry �MS� group, the total rotational angular momentum
quantum number �J�, Ka and Kc values corresponding to the
asymmetric RR, and the normal-mode vibrational quantum
numbers �v1 ,v2 , . . . ,v3M−6�. It is worth emphasizing that the
first two labels, � and J, are exact, as they are valid for the
exact nonintegrable Hamiltonian, while the last labels, Ka,
Kc, and �v1 ,v2 , . . . ,v3M−6�, are inexact designations arising
from the approximate rovibrational Hamiltonian.

Once a corresponding pure vibrational wave function �m

is identified for a rovibrational wave function �nJ

J , one could
attempt to make the �Ka ,Kc� assignment by assuming ca-
nonical energy ordering of asymmetric-top rotational states.
While this approach seems to be valid most of the time, it
breaks down occasionally due to resonances. Mislabeling is

TABLE V. The lowest-energy part of the NMD table of ketene �H2CCO�.

aSee footnote a to Table I.
bObtained with a quartic internal coordinate force field taken from Ref. 79. Seven and six basis functions were used for the bending- and stretching-type
vibrational degrees of freedom, respectively. The decomposition was extended to 35 states in each row and column; � values denote the corresponding sums
of the NMD coefficients over these states. Atomic masses, in u, mH=1.007 825, m12C=12, and m16O=15.994 91 were adopted.
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TABLE VI. Overlap quantities PnJ,m
J �Eqs. �7� and �10�� for making assignments of the first 56 J=3 rovibrational states of H2

16O by correspondence with the
first eight pure vibrational �J=0� states.


v 4638.31 6233.38 7790.50 8295.35 8394.03 9305.88 9873.80 9969.82 Rovibrational labela


rv
b ZPV�A1� 
2�A1� 2
2�A1� 
1�A1� 
3�B2� 3
2�A1� 
1+
2�A1� 
2+
3�B2� � J Ka Kc Vib.

4775.07 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 B1 3 0 3 ZPV
4780.59 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 A2 3 1 3 ZPV
4811.68 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 B2 3 1 2 ZPV
4844.61 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 A1 3 2 2 ZPV
4850.47 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 B1 3 2 1 ZPV
4923.53 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 A2 3 3 1 ZPV
4923.73 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 B2 3 3 0 ZPV
6370.54 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 B1 3 0 3 
2

6378.12 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 A2 3 1 3 
2

6411.05 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 B2 3 1 2 
2

6452.43 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 A1 3 2 2 
2

6457.98 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 B1 3 2 1 
2

6546.09 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 A2 3 3 1 
2

6546.25 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 B2 3 3 0 
2

7928.12 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 B1 3 0 3 2
2

7938.87 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 A2 3 1 3 2
2

7973.50 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 B2 3 1 2 2
2

8026.56 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 A1 3 2 2 2
2

8031.63 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 B1 3 2 1 2
2

8139.39 0.00 0.00 0.99 0.00 0.00 0.01 0.00 0.00 A2 3 3 1 2
2

8139.51 0.00 0.00 0.99 0.00 0.00 0.01 0.00 0.00 B2 3 3 0 2
2

8429.68 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 B1 3 0 3 
1

8434.85 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 A2 3 1 3 
1

8465.70 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 B2 3 1 2 
1

8497.18 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 A1 3 2 2 
1

8503.07 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 B1 3 2 1 
1

8528.94 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 A2 3 0 3 
3

8533.70 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 B1 3 1 3 
3

8564.97 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 A1 3 1 2 
3

8573.52 0.00 0.00 0.00 0.99 0.01 0.00 0.00 0.00 A2 3 3 1 
1

8573.65 0.00 0.00 0.00 0.99 0.01 0.00 0.00 0.00 B2 3 3 0 
1

8594.78 0.00 0.00 0.00 0.01 0.99 0.00 0.00 0.00 B2 3 2 2 
3

8601.03 0.00 0.00 0.00 0.01 0.99 0.00 0.00 0.00 A2 3 2 1 
3

8668.18 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 B1 3 3 1 
3

8668.42 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 A1 3 3 0 
3

9444.01 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 B1 3 0 3 3
2

9459.85 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 A2 3 1 3 3
2

9496.01 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 B2 3 1 2 3
2

9565.94 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 A1 3 2 2 3
2

9570.36 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 B1 3 2 1 3
2

9704.43 0.00 0.00 0.01 0.00 0.00 0.98 0.00 0.00 A2 3 3 1 3
2

9704.53 0.00 0.00 0.01 0.00 0.00 0.98 0.00 0.00 B2 3 3 0 3
2

10 008.52 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 B1 3 0 3 
1+
2

10 015.61 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 A2 3 1 3 
1+
2

10 048.38 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 B2 3 1 2 
1+
2

10 087.85 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 A1 3 2 2 
1+
2

10 093.42 0.00 0.00 0.00 0.00 0.00 0.00 0.99 0.01 B1 3 2 1 
1+
2

10 105.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 A2 3 0 3 
2+
3

10 111.70 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.99 B1 3 1 3 
2+
3

10 144.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 A1 3 1 2 
2+
3

10 177.56 0.00 0.00 0.00 0.00 0.00 0.00 0.79 0.20 B2 3 3 0 
1+
2

10 178.05 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.04 A2 3 3 1 
1+
2

10 182.84 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.80 B2 3 2 2 
2+
3

10 188.26 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.96 A2 3 2 1 
2+
3

10 268.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 B1 3 3 1 
2+
3

10 268.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 A1 3 3 0 
2+
3

a�: Labels of the irreducible representations corresponding to the MS group C2v�M�. J: rotational quantum number. Ka ,Kc: approximate quantum numbers of
the asymmetric rigid rotor. Vib.: vibrational assignment based on the NMD table. ZPV=zero-point vibrational level.
bNuclear masses mH=1.007 276 5 u and m16O=15.990 526 u were adopted as well as the Eckart frame specified in the supplementary material. 
v and 
rv:
variational vibrational and rovibrational energy levels in cm−1 obtained with DEWE using 15 basis functions in each vibrational degree of freedom and the
CVRQD PES of Refs. 70 and 71.
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often averted by first determining the proper irrep of the MS
group for a rovibrational state and applying symmetry rules
for �Ka ,Kc� before invoking energy ordering. For example,
within the 
1 vibrational state of water, the �Ka ,Kc� values
must be ��even, even�, �odd, odd�, �even, odd�, �odd, even��
when �= �A1 ,A2 ,B1 ,B2�, in order. In contrast, for the 
3 vi-
brational state of water, the �Ka ,Kc� values must be ��odd,
even�, �even, odd�, �odd, odd�, �even, even�� when �
= �A1 ,A2 ,B1 ,B2�. These and similar rules can be built into
the automatic labeling protocol. Nonetheless, RRD coeffi-
cients must be employed to establish �Ka ,Kc� assignments
more rigorously. The entries in an RRD table not only reflect
the proper symmetries but also quantify the mixing of the
RR functions in the exact rovibrational wave functions.

Our protocol was tested by obtaining complete rovibra-
tional labels and constructing RRD tables for the low-lying
rovibrational states of the parent isotopologues of water and
ketene over several J values. Assignments based on the PnJ,m

J

quantities are shown in Tables VI and VII for the first 56 and
28 J=3 states of H2

16O and ketene, respectively. Visual rep-
resentations of our results up to J=6 are provided in Fig. 1
for H2

16O, and analogous depictions for ketene are given up

to J=3 in Fig. 2 �the numerical values used to generate Figs.
1 and 2 are given in the supplementary material69�. Finally,
example RRD tables for manifolds of J=6 states of H2

16O
and J=3 states of ketene are presented in Tables VIII and IX.

The need for an effective labeling protocol for rovibra-
tional states can be readily appreciated even by a quick look
at the panels of Figs. 1 and 2. The intermingling of rotational
levels corresponding to different vibrational states always
occurs whenever J�3. For example, the seven J=3 rota-
tional levels of H2

16O corresponding to the 
1 fundamental
span the 8429–8574 cm−1 interval, which also contains
three rotational levels belonging to 
3 that lie between 8528
and 8565 cm−1. The scrambling of rovibrational states of
H2

16O is especially evident in panels �e� and �f� of Fig. 1.
The PnJ,m

J diagnostics �Eqs. �7� and �10�� in Tables VI
and VII are frequently very close to their ideal, unmixed
values of 1.00 and are almost always greater than 0.90, thus
providing unambiguous quantum labels. Nevertheless,
prominent exceptions sometimes occur due to resonances,
which our protocol identifies successfully. For example,
Table VI reveals strong mixing between JKaKc

states belong-
ing to different combination levels of H2

16O: the

TABLE VII. Overlap quantities PnJ,m
J �Eqs. �7� and �10�� for making assignments of the first 28 J=3 rovibrational states of ketene �H2CCO� by correspon-

dence with the first four pure vibrational �J=0� states.


v 6831.98 7269.05 7365.97 7435.49 Rovibrational labela


rv
b ZPV�A1� 
9�B2� 
6�B1� 
5�B1� � J Ka Kc Vib.

6836.02 1.00 0.00 0.00 0.00 A2 3 0 3 ZPV
6845.13 1.00 0.00 0.00 0.00 B1 3 1 3 ZPV
6845.21 1.00 0.00 0.00 0.00 B2 3 1 2 ZPV
6872.58 1.00 0.00 0.00 0.00 A2 3 2 1 ZPV
6872.58 1.00 0.00 0.00 0.00 A1 3 2 2 ZPV
6918.25 1.00 0.00 0.00 0.00 B1 3 3 1 ZPV
6918.25 1.00 0.00 0.00 0.00 B2 3 3 0 ZPV
7273.11 0.00 1.00 0.00 0.00 B1 3 0 3 
9

7280.30 0.00 0.98 0.01 0.00 A2 3 1 3 
9

7280.38 0.00 0.98 0.01 0.00 A1 3 1 2 
9

7302.34 0.00 0.94 0.04 0.02 B1 3 2 1 
9

7302.34 0.00 0.94 0.04 0.02 B2 3 2 2 
9

7339.80 0.00 0.89 0.08 0.03 A2 3 3 1 
9

7339.80 0.00 0.89 0.08 0.03 A1 3 3 0 
9

7370.01 0.00 0.00 1.00 0.00 B2 3 0 3 
6

7379.84 0.00 0.01 0.99 0.00 A1 3 1 3 
6

7379.91 0.00 0.01 0.99 0.00 A2 3 1 2 
6

7409.11 0.00 0.04 0.95 0.01 B2 3 2 1 
6

7409.11 0.00 0.04 0.95 0.01 B1 3 2 2 
6

7439.54 0.00 0.00 0.00 1.00 B2 3 0 3 
5

7449.46 0.00 0.01 0.00 0.99 A1 3 1 3 
5

7449.54 0.00 0.01 0.00 0.99 A2 3 1 2 
5

7456.88 0.00 0.06 0.90 0.02 A2 3 3 0 
6

7456.88 0.00 0.06 0.90 0.02 A1 3 3 1 
6

7479.44 0.00 0.02 0.00 0.98 B2 3 2 1 
5

7479.44 0.00 0.02 0.00 0.98 B1 3 2 2 
5

7529.42 0.00 0.05 0.01 0.94 A1 3 3 1 
5

7529.43 0.00 0.05 0.01 0.94 A2 3 3 0 
5

a�: Labels of the irreducible representations corresponding to the MS group C2v�M�. J: rotational quantum number. Ka, Kc: approximate quantum numbers of
the asymmetric rigid rotor. Vib.: vibrational assignment based on the NMD table. ZPV=zero-point vibrational level.
bAtomic masses mH=1.007 825 u, m12C=12 u, and m16O=15.994 915 u were adopted as well as the Eckart frame specified in the supplementary material. 
v

and 
rv: vibrational and rovibrational energy levels in cm−1 obtained with DEWE using seven and six basis functions in the bending-type and stretching-type
vibrational degrees of freedom, respectively, and the quartic force field of Ref. 79.
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rovibrational eigenstate at 10 177.6 cm−1 is 79%�330�
1

+
2��+20%�322�
2+
3��, while that for 10 182.8 cm−1 is
20%�330�
1+
2��+80%�322�
2+
3��. This pronounced reso-
nance causes a switching in relative energy of the 330 and 331

levels of 
1+
2 relative to the expected RR energy ordering
�E�331��E�330��, although the difference is less than
0.5 cm−1. This case is the only one encountered for H2

16O in
the current study for which the canonical sequence of RR
levels is not obeyed.

Expected near degeneracies are manifested in the assign-
ments given in Tables VI and VII. Within the bending vibra-
tional states of water �0 v2 0�, the JJ1−JJ0 rotational split-
ting decreases uniformly from 0.20 cm−1 for v2=0 to

0.10 cm−1 for v2=3, evidencing the formation of incipient
local-mode pairs. The ketene molecule is very nearly a
symmetric top, with �A0 ,B0 ,C0� close to
�9.410,0.343,0.331� cm−1, in order.79 Accordingly, a near
double degeneracy for all values of Ka�1 is seen in the
rovibrational levels in Table VII.

The RRD results in Tables VIII and IX demonstrate that
the mixing among the RR wave functions is comfortably
small. In all cases but one in these tables there is a dominant
square-overlap coefficient of �92%, the exception occurring
for the B2 state of H2

16O at 7821.3 cm−1 that is
83%�634�2
1��+16%�624�
1+
3��. The computed RRD mix-
ing does depend slightly on the choice of rotational constants
for the RR basis functions. The smallest mixing occurs if one
employs the rotational constants of the corresponding pure
vibrational state. Nevertheless, even if alternate choices are
made, such as the equilibrium rotational constants, the in-
crease in mixing is not sufficient to create ambiguity in the
assignment protocol.

IV. SUMMARY

Powerful variational methods are increasingly used for
computing accurate rovibrational states of polyatomic mol-
ecules. Standard, automated procedures are needed for as-
signing and interpreting the large collections of eigenstates

(a) J = 1

(b) J = 2

(c) J = 3

(d) J = 4

(e) J = 5

(f) J = 6

FIG. 1. Visualization of the correspondence between rovibrational states
�J�0� and pure vibrational states �J=0� of H2

16O, ordered in columns and
rows, respectively, in terms of increasing energy. Dark squares match the
J�0 states with their J=0 counterparts, according to the PnJ,m

J quantities in
Eq. �7�. The more similar the vibrational parts, the darker the square is in the
figure. The variational computations utilized the DEWE code �Ref. 3�,
adopted the Eckart frame specified in the supplementary material �Ref. 69�,
and are based on the CVRQD PES �Refs. 70 and 71�.

(a) J = 1

(b) J = 2

(c) J = 3

FIG. 2. Visualization of the correspondence between rovibrational states
�J�0� and pure vibrational states �J=0� of ketene, ordered in columns and
rows, respectively, in terms of increasing energy. Dark squares match the
J�0 states with their J=0 counterparts, according to the PnJ,m

J quantities in
Eq. �7�. The variational computations utilized the DEWE code �Ref. 3�,
adopted the Eckart frame specified in the supplementary material �Ref. 69�,
and are based on the quartic force field of Ref. 79.
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resulting from state-of-the-art variational computations in or-
der to solve chemical problems and to compile self-
consistent spectroscopic databases, inter alia.

In this paper we demonstrate the use of NMD tables as a
standard protocol for making quantitative assignments of ex-
act, anharmonic vibrational states. Such tables follow natu-
rally in variational approaches based on the Eckart–Watson
Hamiltonian, and they are applicable, in principle, to general
coordinate representations of the vibrational problem. In-
deed, NMD tables can be most beneficial when coordinate
systems are employed that are not chemically motivated.

A formalism for assigning rotational quantum labels to
variational eigenstates with J�0 is needed to complement
the NMD approach for J=0 states. We have proposed a
method that uses a diagnostic evaluated from sums of
squares of overlap integrals to match each rovibrational level
with a pure vibrational state. After these identifications are
made, RRD tables are utilized to find correspondences with
asymmetric-top rotational eigenfunctions, and hence to as-
cribe labels. Our RRD protocol is applicable regardless of
whether the vibrational part of the wave function is described
well by normal-mode wave functions, and it is also able to
clearly identify resonances between different rotational lev-
els of different vibrational states.

As tests of our procedures for labeling and analyzing
rovibrational eigenstates, variational computations were per-
formed on several carefully selected molecules, namely,
H2

16O, HNCO, trans-HCOD, 14N13C12C16O, and ketene
�H2CCO�. The NMD and RRD protocols were implemented
in the DEWE program package3 employing the Eckart frame
and normal coordinates corresponding to the actual PES
used.

An interesting conclusion of the numerical results ob-
tained is that the normal-mode picture of the vibrational
bands commonly breaks down even for some of the funda-
mentals of molecules. Considerable mixing among some of
the low-energy states seems to be the rule rather than the
exception for the cases studied here. This finding may also
be important for Eckart–Watson Hamiltonian-based vibra-
tional self-consistent-field �VSCF� spectroscopy �and treat-
ments based on such VSCF ansätze�. Along with symmetry
classification, the approximate vibrational and rotational la-
bels attached to variationally computed rotational-vibrational
eigenstates provide information much needed by experimen-
tal spectroscopists. NMD and RRD tables appear to be useful
also for spectroscopic perturbation theory as they give a clear
indication of extensive mixings among states which could be
important when setting up the effective Hamiltonians used to

TABLE VIII. RRD tables, based on Eq. �8�, for the J=6 rovibrational states of H2
16O corresponding to the 12th pure vibrational state, showing all

contributions larger than 1%.

RRD�
rv ,
v�a,b 
v 7201.2�A1� 7201.2�A1� 7201.2�A1� 7201.2�A1� 6776.0�A1� 7249.2�B2� 7249.2�B2� 8761.9�A1�

rv JKaKc

606�A1� 624�A1� 642�A1� 660�A1� 660�A1� 634�B2� 652�B2� 660�A1�

A1 7631.4 100 0 0 0 0 0 0 0
7783.7 0 99 0 0 0 1 0 0
7927.6 0 0 94 0 0 4 1 0
8195.5 0 0 0 95 1 0 1 1

RRD�
rv ,
v�a,b 
v 7201.2�A1� 7201.2�A1� 7201.2�A1� 7249.2�B2� 7249.2�B2�

rv JKaKc

615�A2� 633�A2� 651�A2� 625�B1� 643�B1�

A2 7725.1 99 0 0 0 0
7838.6 0 97 0 2 1
8049.2 0 0 97 0 3

RRD�
rv ,
v�a,b 
v 7201.2�A1� 7201.2�A1� 7201.2�A1� 6776.0�A1� 7249.2�B2� 7249.2�B2� 8761.9�A1�

rv JKaKc

625�B1� 643�B1� 661�B1� 661�B1� 633�A2� 651�A2� 661�B1�

B1 7733.0 99 0 0 0 0 0 0
7926.7 0 92 0 0 6 1 0
8195.5 0 0 95 1 0 1 1

RRD�
rv ,
v�a,b 
v 7201.2�A1� 7201.2�A1� 7201.2�A1� 7249.2�B2� 7249.2�B2� 7444.9�A1�

rv JKaKc

616�B2� 634�B2� 652�B2� 624�A1� 642�A1� 634�B2�

B2 7631.8 100 0 0 0 0 0
7821.3 0 83 0 16 0 0
8049.0 0 0 94 0 3 1

aWave functions for rovibrational levels 
rv, �nJ

J �Q ,� ,� ,�� are decomposed in terms of columns of RR rotational eigenfunctions �JKaKc
,
mJ

J �� ,� ,��� attached
to the pure vibrational states, �m�Q�, lying at 
v. RRD coefficients in percent, rounded to the nearest integer; energies in cm−1 relative to the ZPV energy. A
RRD array is given for each of the C2v�M� symmetry blocks �A1 ,A2 ,B1 ,B2�.
bThe variational rovibrational computations were performed as specified in footnote a to Table VI. The J=6 RR eigenfunctions were constructed from the
vibrationally averaged rotational constants of the 
v=7201.2 cm−1 state: A=26.3466 cm−1, B=14.1044 cm−1, and C=8.9108 cm−1 �Ref. 83�.
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interpret high-resolution spectroscopic experiments. Thus,
NMD and RRD tables, resulting in complete rovibrational
labels, should be routinely computed at least for semirigid
molecules.
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