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Preface

Molecular Spectroscopy and Quantum
Dynamics: Molecules in Motion

That everything changes is an unescapable
fact which from time immemorial has moved
poets, exercised metaphysicians and excited
the curiosity of natural philosophers.
(C.N. Hinshelwood)

Ever since Max Planck introduced “quanta” in the year
1900 in order to explain the spectral distribution of
thermal black body radiation by a “quantum statistical”
theory and Bohr’s quantum theoretical interpretation of
atomic line spectra in 1913, there has been a close re-
lation between spectroscopy and quantum theory. This
relation became even closer – one might speak of a fruit-
ful marriage – with the advent of quantum mechanics
in 1925. Indeed, quantum mechanics resulted in the
discovery of the completely new world of microscopic
dynamics, very different from the old world of classical
mechanics describing so well the macroscopic dynam-
ics of our daily life including celestial dynamics, which
in the old world defined even our quantitative notion of
time in terms of hours, days, months, and years. Today
quantum dynamics provides an understanding of mi-
croscopic phenomena ranging from elementary particle
physics to nuclei, atoms, and molecules.

As far as molecular spectroscopy and quantum me-
chanics are concerned it is probably fair to say that dur-
ing much of the 20th century the analysis of spectra was
dominated by the time-independent “structural” point
of view in terms of stationary states, their energies, and
wavefunctions. The three classic volumes on “Molecu-
lar Spectra and Molecular Structure” published by Ger-
hard Herzberg between 1939 and 1966 provide beauti-
ful examples for this view with the quantum mechanical
analysis of molecular spectra carrying an enormous in-
formation content. Further such examples can be found
in many other books and the scientific journal litera-
ture during these decades. Also the three volumes of
the “Handbook of High Resolution Spectroscopy” pub-
lished in 2011, reporting many great and more recent
advances both in theory and experiment, are dominated

by a majority of chapters dealing with this stationary
state point of view, although time-dependent molecular
phenomena are dealt with as well to some extent.

On the other hand, the time-dependent phenom-
ena of molecular kinetics during much of the 20th
century were largely understood using the statistical
point of view in terms of rate constants, for instance,
in the framework of transition state theory, where quan-
tum mechanics plays an important but subordinate, not
truly “dynamical” role. This situation changed dramati-
cally during the last decades of the 20th century, driven
by the availability of strong, coherent laser radiation
allowing for the observation of phenomena such as co-
herent infrared multiphoton excitation of polyatomic
molecules, coherent control, and femtosecond kinetics.
The now historical First Conference on “Femtosecond
Chemistry” in Berlin 1993 is reflected by a special issue
in the Journal of Physical Chemistry (Vol. 97, No. 48,
pp. 12423–12649) and the two monumental volumes
on “Femtosecond Chemistry” edited by Jörn Manz and
Ludger Wöste (VCH, Weinheim 1995). While in Chap-
ter 1 of these volumes the Lord George Porter as a pio-
neer in the field starting with microsecond to nanosec-
ond kinetics claimed (on page 3) that with the “fem-
tosecond timescale . . . chemists are near the end of the
race against time” the outlook of the last Chapter 27 by
another author (on page 781) stated that “considering
the possible time scales of molecular processes, it be-
comes clear that femtosecond (fs) resolution can only
be a short time intermediate level in research and our
goal must be to approach the yoctoseconds (10−9 fs)
and beyond”. Possibilities for this were outlined estab-
lishing the relation between molecular dynamics and
the symmetries of high energy physics.

Indeed, it turned out that with the year 2000 vigor-
ous developments in molecular spectroscopy and quan-
tum dynamics on the attosecond time scale became a
reality. Truly time-dependent dynamics with “Molecules
in Motion” was the theme of a summarizing article
in 2001 and recently also of the COST action MOLIM
(2014–2019) combining efforts from numerous labora-
tories in many countries. It thus seemed timely to pro-
vide by 2020 a book summarizing some of these recent

xiii
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advances. No single author today can claim adequate
expertise of the diverse fields related to these advances
and it was therefore the strategy of the present book to
collect contributions from leading authors in the field
covering theory as well as experiment. Chapter 1 pro-
vides an introductory survey of the theoretical founda-
tions by the editors of the book, starting from the basic
concepts and dealing with some of the essential the-
oretical methods of treating time dependent quantum
dynamics, including also a discussion of the important
role of symmetries. Chapter 2 by Császár, Fábri, and Szi-
darovszky presents exact numerical methods for station-
ary state molecular quantum mechanics of polyatomic
molecules. This provides the basis for an exact analysis
of molecular spectra as also a starting point for many
of the approaches towards time-dependent molecular
quantum dynamics.

Chapter 3 by Braun, Bayer, Wollenhaupt, and Baum-
ert reports on 2-Dimensional Strong Field Spectroscopy
as applied to ultrafast phenomena in electronic dynam-
ics and control schemes for molecules. Chapter 4 by
Baykusheva and Wörner provides an overview of the
state-of-the-art of experiments in attosecond molecu-
lar spectroscopy and dynamics and their theoretical de-
scription, including also photoionization and the dy-
namics of ions and further applications.

Chapter 5 by Gokhberg, Kuleff, and Cederbaum out-
lines the theoretical description of electronic decay cas-
cades and interatomic Coulombic decay processes in
chemical environments after excitation with high en-
ergy photons. Chapter 6 by Vaníček and Begušić pro-
vides, on the other hand, the theory of vibrationally
resolved electronic spectra of polyatomic molecules by
means of ab initio semiclassical methods with thawed
Gaussians. Chapter 7 by Quack and Seyfang aims at an
overview over Atomic and Molecular Tunnelling Pro-
cesses in Chemistry, one of the central quantum effects
in molecular dynamics, where the motion of “heavy”
particles are involved (i.e., atoms or nuclei from pro-
tons, perhaps also muons or Muonium, to heavy atoms,
but not electrons).

Chapter 8 by Ando, Iwasaki, and Yamanouchi dem-
onstrates in beautiful experiments how Ultrafast Fem-
tosecond Dynamics and the High Resolution Spec-
troscopy of Molecular Cations can be connected. Chap-
ter 9 by Cvitaš and Richardson finally reports results
on the quantum dynamics of water clusters as central
systems in chemistry. This forms the basis for our spec-
troscopic and quantum dynamical understanding of the
“liquid of life”, for which many theoretical and experi-
mental advances have been made in recent years.

To conclude we mention a further aspect of the time-
liness of quantum dynamics today: The year 2019 has
seen the introduction of important changes to the In-
ternational System of Units, the SI (Système Interna-
tional). For the first time in the history of mankind,
the units of measurements in science as in daily life
are based on fundamental natural constants, includ-
ing the quantum of action h. This concludes finally a
development, which started with the atomic Cesium
clock as standard (accepted at the 13ième Conférence
Générale des Poids et Mesures, 1967) defining the sec-
ond (as time unit s) through an atomic motion based
on a hyperfine structure interval in the ground state of
Cs, whereas formerly the second had been defined by an
astronomical time interval with the planetary motion of
the earth as an appropriate fraction of the tropical year
1900 (31 556 925.9747 s). Later the meter (m) as a unit
of length was defined using a definition of the univer-
sal speed of light in vacuo, c, and the distance traveled
in 1 s. Finally, according to the resolutions of the 26th
Conference of Weights and Measures in Paris (2019) the
unit for electric current was defined by fixing the value
of the elementary charge (e) by definition, and the unit
of mass, the kilogram kg, by fixing the Planck constant
to a defined value. There is really a spectroscopic idea
behind this. Given the relation of the meter and the
second, and the definition of the latter through the Cs
atom period or its inverse, the frequency ν, the mass
m can be related to the frequency via the fundamental
equations

ν = "m c2/h,

or

"m = hν/c2.

One can thereby obtain a definition of the kg, because
one has for the unit of action 1 J s = 1 m2 kg/s, and m
and s are already defined. While the experiment to re-
alize such a definition is more complicated, one might
say that the relativistic mass of the photon emitted in
the hyperfine transition of Cs, or equivalently the mass
difference between the Cs atom in the lower state and
in the upper state of the transition, is an appropriate
fraction of the kg (through "m ≈ 6.777 265 10−41 kg),
thereby defining the kilogram by “spectroscopy and
quantum dynamics”. In this sense our current century
has become the true quantum century relating the mi-
croscopic and macroscopic quantities in terms of their
units. These relations might perhaps remain in use for
the millennium, in principle.

Thus to complement our preface, we add for the con-
venience of the readers a brief summary of the new
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“quantum dynamical” SI and a table of the new val-
ues for the fundamental constants, and further con-
stants useful for molecular quantum dynamics and
spectroscopy.

We should also conclude with our thanks to the au-
thors contributing to this volume and many colleagues
who gave us advice and support, too numerous to men-
tion all of them individually, but they can be found
cited in the references of individual chapters, and we

give our particular thanks to Frédéric Merkt and Jür-
gen Stohner, and last but not least also to Regina and
Roswitha.

Roberto Marquardt and Martin Quack

Strasbourg and Zurich
July 2020
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Summary of the SI (excerpt from the SI Brochure, “The International System of Units (SI)”,
Bureau International des Poids et Mesures, 9th edition, 2019)

The SI defines all base units by means of fixed, defined values of certain natural constants.

TABLE 1
The seven defining constants and the corresponding units they define.

Defining constant Symbol Numerical value Unit

hyperfine transition frequency of Cs "νCs 9 192 631 770 Hz

speed of light in vacuum c 299 792 458 m s−1

Planck constant h 6.626 070 15 × 10−34 J s

elementary charge e 1.602 176 634 × 10−19 C

Boltzmann constant k 1.380 649 × 10−23 J K−1

Avogadro constant NA 6.022 140 76 × 1023 mol−1

luminous efficacy Kcd 683 lm W−1

TABLE 2
The definition of the base units.

The second (s)
1 s = 1 Hz−1

1 Hz =
"νCs

9 192 631 770
1 s = 9 192 631 770

"νCs

The meter (m) 1 m = c s

299 792 458
= 9 192 631 770

299 792 458

c

"νCs

The kilogram (kg) 1 kg = h s m−2

6.626 070 15 × 10−34
= (299 792 458)2

6.626 070 15 × 10−34 × 9 192 631 770

h"νCs

c2

The ampere (A) 1 A = e s−1

1.602 176 634 × 10−19
= 1

1.602 176 634 × 10−19 × 9 192 631 770
"νCs e

The kelvin (K) 1 K = 1.380 649 × 10−23 kg m2 s−2

k
= 1.380 649 × 10−23

6.626 070 15 × 10−34 × 9 192 631 770

h"νCs

k

The mole (mol) 1 mol = 6.022 140 76 × 1023

NA

The candela (cd)a 1 cd =
Kcd kg m2 s−3 sr−1

683
= 1

6.626 070 15 × 10−34 × (9 192 631 770)2 × 683
h"ν2

Cs Kcd sr−1

a The definition of the candela implies a definition of the numerical value of the luminous efficacy Kcd, see the SI Brochure for details.

TABLE 3
SI prefixes for decimal multiples and submultiples of SI units.

Factor Name Symbol Factor Name Symbol
101 deca da 10−1 deci d
102 hecto h 10−2 centi c
103 kilo k 10−3 milli m
106 mega M 10−6 micro µ
109 giga G 10−9 nano n
1012 tera T 10−12 pico p
1015 peta P 10−15 femto f
1018 exa E 10−18 atto a
1021 zetta Z 10−21 zepto z
1024 yotta Y 10−24 yocto y
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TABLE 4
Useful physical constantsa.

Quantity Symbol Value
magnetic constant µ0 1.256 637 062 12(19) × 10−6 N A−2

electric constant ε0 = 1/µ0c0
2 8.854 187 8128(13) × 10−12 F m−1

electron mass me 9.109 383 7015(28) × 10−31 kg

proton mass mp 1.672 621 923 69(51) × 10−27 kg

neutron mass mn 1.674 927 498 04(95) × 10−27 kg

atomic mass constant mu = 1 u = 1 Da 1.660 539 066 60(50) × 10−27 kg

molar mass constant Mu 0.999 999 999 65(30) × 10−3 kg mol−1

Faraday constant F = NA e 9.648 533 212. . . × 104 C mol−1 (exact)

molar gas constant R = NA k 8.314 462 618. . . J K−1 mol−1 (exact)

zero of the Celsius scale 273.15 K (defined)

molar volume of ideal gas,
p = 100 kPa, t = 0 ◦C

Vm 22.710 954 64. . . dm3 mol−1 (exact)

fine-structure constant α = µ0e2c0/2h

α−1

7.297 352 5693(11) × 10−3

137.035 999 084(21)

Bohr radius a0 = ε0h2/πmee2 5.291 772 109 03(80) × 10−11 m

Hartree energy Eh = h2/4π2mea0
2 4.359 744 722 2071(85) × 10−18 J

Rydberg constant R∞ = Eh/2hc0 1.097 373 156 8160(21) × 107 m−1

electron volt eV 1.602 176 634 × 10−19 J (exact)

atomic unit of time h/(2π Eh) 2.418 884 326 5857(47) × 10−17 s

Bohr magneton µB = eh/4πme 9.274 010 0783(28) × 10−24 J T−1

electron magnetic moment µe −9.284 764 7043(28) × 10−24 J T−1

Landé g-factor for the free electron ge = 2µe/µB −2.002 319 304 362 56(35)

nuclear magneton µN = eh/4πmp 5.050 783 7461(15) × 10−27 J T−1

Stefan–Boltzmann constant σ = 2π5k4/15h3c0
2 5.670 374 419. . . × 10−8 W m−2 K−4 (exact)

first radiation constant c1 = 2πhc0
2 3.741 771 852. . . × 10−16 W m2 (exact)

second radiation constant c2 = hc0/k 1.438 776 877. . . × 10−2 m K (exact)

Newtonian constant of gravitation G 6.674 30(15) × 10−11 m3 kg−1 s−2

standard acceleration of gravity gn 9.806 65 m s−2 (defined)

Josephson constant KJ = 2e/h 483 597.848 4 . . . 109 Hz V−1 (exact)

von Klitzing constant RK = h/e2 25 812.807 45 . . . ' (exact)

Fermi coupling constant GF 1.435 8510(8) × 10−62 J m3

Weak mixing parameter sin2(θw) 0.2229(3)

a According to the view of https://physics.nist.gov/cuu/Constants/ as per July 31, 2020. The symbol c0 is an alternative for the symbol of the
speed of light in vacuum, c. The value of the weak mixing parameter sin2(θw) depends on the scheme used and upon momentum transfer.
In the divisions all symbols to the right of the division sign are implied to be in the denominator, thus a/b c d corresponds to: a/(b c d).
Defined constants are given in Table 1. Constants which can be calculated exactly from the defined constants are given with a finite number
of digits followed by . . . , implying more digits than given here. Standard uncertainties are stated for the other constants in parentheses in
terms of the last specified digits.
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CHAPTER 1

Foundations of Time Dependent
Quantum Dynamics of Molecules
Under Isolation and in Coherent
Electromagnetic Fields
ROBERTO MARQUARDT∗ • MARTIN QUACK†
∗Laboratoire de Chimie Quantique, Institut de Chimie, Université de Strasbourg, Strasbourg, France
† Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland

Abstract
We discuss the foundations of molecules in motion as treated by time-dependent quantum dynamics from very short to long
time scales. We consider molecules in isolation, as well as under the influence of coherent electromagnetic radiation, as relevant
in many current time-dependent spectroscopic experiments.

1.1 INTRODUCTION
Starting with the analysis by Planck of thermal black
body radiation using quantization (Planck, 1900a,b)
and the photon concept introduced for the understand-
ing of the photoelectric effect (Einstein, 1905), it was
particularly Bohr’s work on the analysis of atomic spec-
tra, notably the hydrogen atom and the Balmer for-
mula (Balmer, 1885a,b), which led to an early atomic
and molecular “quantum” dynamics in relation to
spectroscopy (Bohr, 1913a,b,c; Sommerfeld, 1919). In
Bohr’s picture of quantum dynamics, stationary atomic
and molecular states corresponding to quantized ener-
gies, say, Ei and Ef , could undergo radiative transitions
by emission of monochromatic radiation of frequency
νf i satisfying the Bohr condition with Planck’s con-
stant h:1

∣∣"Ef i

∣∣ =
∣∣Ef − Ei

∣∣ = hνf i . (1.1)

The corresponding radiative “quantum jump” by
emission or absorption of radiation was treated by
Einstein quantitatively using statistical concepts
(Einstein, 1916a,b, 1917). This was complemented by
the more fundamental “quantum mechanics”
(Heisenberg, 1925) and “wave mechanics”

1According to Resolution 1 of the 26th Conference of Weights and
Measures (International Bureau of Weights and Measures, 2019),
as of 20 May 2019, the Planck constant has the fixed value of
6.626 070 15 · 10−34 Js.

(Schrödinger, 1926a,b,c,d,e, see also the work of
de Broglie, 1926 and Dirac, 1927, 1929), where also
the stationary states and transitions between them were
central concepts for understanding atomic and molecu-
lar spectra and structure (Herzberg, 1945, 1950, 1966).
Indeed, high resolution spectroscopy has remained one
of the most important tools in understanding atomic
and molecular quantum dynamics until today (Merkt
and Quack, 2011a,b). It is probably fair to say that
during the first half of the 20th century the structural
stationary state aspects of spectroscopy were dominant.

In the second half of the 20th century, much driven
by the development of the MASER and LASER, the
time-dependent aspects of molecular spectroscopy and
quantum dynamics have become increasingly impor-
tant. The dynamics on ever shorter time scales have
become accessible experimentally, from microseconds
to nanoseconds, to picoseconds and femtoseconds. To-
day the attosecond (10−18 s) time scale is the subject
of intense investigations as exemplified by several chap-
ters of the present book. And even the yoctosecond
(10−24 s) from high energy physics can be shown to
be of some relevance for molecular quantum dynam-
ics (Quack, 1994, 1995a,b, 2001, 2006, 2011a,b), as we
shall also briefly discuss here in Section 1.2. In paral-
lel to the experimental developments, theoretical ap-
proaches were developed for treating explicitly time de-
pendent molecular quantum dynamics, “molecules in
motion” (Quack, 2001), which has been also the title

Molecular Spectroscopy and Quantum Dynamics. https://doi.org/10.1016/B978-0-12-817234-6.00006-4
Copyright © 2021 Elsevier Inc. All rights reserved.
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TABLE 1.1
Summary of currently known elementary (pointlike) particles with their approximate masses and the
charges Q in multiples of the elementary chargea.

Standard model of particle physics: particles
Leptons (S = !!!/2, fermions)

νe νµ ντ Q = 0e

Mass m/(GeV c−2) <2 × 10−9 <2 × 10−4 <2 × 10−2

e− µ− τ− Q = −1e

Mass m/(GeV c−2) 5 × 10−4 0.1 1.8

Quarks (S = !!!/2, fermions)

u1, u2, u3 c1, c2, c3 t1, t2, t3 Q = 2/3 e

Mass m/(GeV c−2) 5 × 10−3 1.3 174

d1, d2, d3 s1, s2, s3 b1, b2, b3 Q = −1/3 e

Mass m/(GeV c−2) 10−2 0.2 4.3

a After Groom et al., 2000, Perkins, 2000.
The essence of experimental data from high-energy physics can be accounted for by these particles. To each particle, one has an antiparticle
of opposite charge (not listed here Schopper, 1999, after Quack and Stohner, 2005, see also Quack, 2006, 2011a and CERN reference cited
therein). The recent observations of neutrino oscillations indicate that also m(ντ ,νµ) c2 < 2 eV.

of a most recent transnational and transdisciplinary re-
search effort (COST action “Molecules in Motion”).

The goal of the present review is to provide a broad
overview of various theoretical aspects and methods of
time-dependent molecular quantum dynamics includ-
ing also some of the foundations of the underlying
physics. We shall take here the practical approach to
time dependent quantum dynamics, where “time” is
simply a parameter to be measured experimentally by
some clock (say, an atomic clock) and “measurements”
are considered to provide spectroscopically observed
quantities. This approach circumvents some problems
related to the foundations of time-dependent quantum
mechanics. At this point, we thus take the theory as be-
ing used like a heuristic model describing and predict-
ing experiments qualitatively and quantitatively (using
in essence the “Copenhagen interpretation”). This is not
to imply that there are no remaining basic conceptual
problems, such as those considered by Bell (2004), Pri-
mas (1981), as well as by Fröhlich and Schnubel (2012).
We shall return to some of the basic questions in con-
clusion, but they have no influence on the remainder of
the review. We shall start out in Section 1.2 by a brief
summary of the current theory of microscopic matter in
terms of the standard model of particle physics (SMPP)
and time dependent classical and quantum molecular
dynamics, with a focus on the time evolution opera-
tor approach to time dependent quantum dynamics. In
Section 1.3 we discuss in some detail various methods
for solving the time-dependent Schrödinger equation

(see also Tannor, 2007). Section 1.4 provides a brief dis-
cussion of relevant Hamiltonians, Section 1.5 deals with
coordinates. In Section 1.6 we treat quite explicitly the
time dependent quantum dynamics with excitation by
coherent monochromatic radiation. In the concluding
Section 1.7 we discuss the role of symmetries, constants
of the motion and some related fundamental questions.

1.2 FOUNDATIONS OF MOLECULAR
QUANTUM DYNAMICS BETWEEN HIGH
ENERGY PHYSICS, CHEMISTRY AND
MOLECULAR BIOLOGY

1.2.1 The Standard Model of Particle
Physics (SMPP) as a Theory of
Microscopic Matter Including the Low
Energy Range of Atomic and Molecular
Quantum Dynamics

The current theoretical understanding of microscopic
matter is summarized in the so-called “Standard Model
of Particle Physics”. In spite of its modest name, “Model”,
it is really a fairly comprehensive theory of microscopic
matter, particles, and fields, from high energy particle
physics to atomic and molecular physics. Microscopic
matter is built from elementary particles, which interact
by four fundamental forces. These are summarized in
Tables 1.1 and 1.2.

Fig. 1.1 summarizes the modern view of the origin of
the fundamental interactions as publicized on the web-



CHAPTER 1 Foundations of Time Dependent Quantum Dynamics of Molecules 3

TABLE 1.2
Summary of interactions and field particlesa.

Interactions and field particles
Strong Electromagnetic Weak Gravitation
SU(3) SU(2) ⊗ U(1)

Relative Strength 1 1/137 ≈ 10−5 ≈ 10−38

Range 0.1–1 fm (∞) <0.1 fm (∞)

Gauge bosons
(S = 1!) (except
graviton)

Gluons g1–g8 Photon γ W± , Z0 (Still hypothetical),
(graviton G, S = 2!)

Mass m/(GeV c−2) <10−2 <10−24 ≈ 80, ≈ 91

Acting on particles Hadrons Charged Hadrons, leptons All

Important in Atomic nucleus Atoms and molecules Radioactive β-decay
(neutrons), chiral
molecules

Sun, planets,
spacecraft, etc.

a After Quack and Stohner, 2005, see also Quack, 2006, 2011a.

The Forces in Nature
Type Intensity of Forces Binding Particle Important in

(Decreasing Order) (Field Quantum)
Strong Nuclear Force ∼1 Gluons (no mass) Atomic Nucleus
Electro-Magnetic Force ∼10−3 Photons (no mass) Atoms and Molecules
Weak Nuclear force ∼10−5 Bosons Z, W+, W−,

(heavy)
Radioactive β-Decay,
Chiral Molecules

Gravitation ∼10−38 Gravitons (?) Sun and Planets etc.

FIG. 1.1 Forces in the standard model of particle physics (SMPP) and important effects. This is taken from
the CERN website (CERN, 1992), but the importance of the weak interaction for chiral molecules has been
added here from our work following Quack (2006) and by permission of CERN in public domain. We also
note (while not mentioned by CERN) that the motif of lightly dressed ladies throwing a ball has been
presented in a mosaic at Piazza Armerina, Sicily, 4th Century AD.

site of a large accelerator facility (CERN). According to
this view, the electromagnetic force, which is included
in the “Dirac-like” ordinary quantum chemistry, leads
to the Coulomb repulsion, say, between two electrons
in a molecule by means of photons as field particles.
In the picture, the two electrons are compared to the
ladies on two boats throwing a ball. If we do not see the
exchange of the ball, we will observe only the motion
of the boats resulting from the transfer of momentum

in throwing the ball, and we could interpret this as re-
sulting from a repulsive “force” between the two ladies
on the boats. Similarly, we interpret the motion of the
electrons resulting from “throwing photons as field par-
ticles” as arising from the Coulomb law, which forms
the basis of ordinary quantum chemistry. The Coulomb
force with the 1/r potential energy law is of long range.
The other forces arise similarly. The strong force with
very short range (0.1 to 1 fm) mediated by the gluons



4 Molecular Spectroscopy and Quantum Dynamics

as field particles is important in nuclear physics but has
only indirect influence in chemistry by providing the
structures of the nuclei, which enter as parameters in
chemistry, but there is otherwise usually no need to re-
tain the strong force explicitly in chemistry. The weak
force, on the other hand, is mediated by the W± and Z0

bosons as field particles of very high mass (98 dalton for
the Z0 boson, with m0 c2 = 91 GeV) and short lifetime
(0.26 yoctoseconds = 0.26 · 10−24 s). This force is thus
very weak and of very short range (< 0.1 fm) and one
might therefore think that similar to the even weaker
gravitational force (mediated by the still hypothetical
graviton of spin 2) it should not contribute significantly
to the forces between the particles in molecules (nuclei
and electrons). Indeed, the weak force, because of its
short range, becomes effective in molecules, when the
electrons penetrate the nucleus, and then it leads only
to a very small perturbation on the molecular dynam-
ics, which ordinarily might be neglected completely. It
turns out, however, that because of the different symme-
try groups of the electro-magnetic and the electroweak
Hamiltonians there arises a fundamentally important,
new aspect in the dynamics of chiral molecules, which
we therefore have added in our Fig. 1.1 different from
the figure from CERN, where this was not originally in-
cluded.

When applying the standard model of particle
physics (SMPP) to the low energy phenomena of atomic
and molecular physics, one can do so at several levels
of approximation. Firstly, the effects from the funda-
mental particles and the strong force generating the
atomic nuclei are all incorporated in the properties of
the specific nucleus, which are its mass, intrinsic angu-
lar momentum (usually called “nuclear spin” although
it is not a pure spin but has contributions from the
orbital motions of the nucleons within the nucleus)
parity, magnetic dipole moment, nuclear quadrupole
moment, etc. The nuclei as given by these parameters
are thus the “effective elementary particles” of atomic
and molecular physics, and neither the true elemen-
tary particles nor the strong nuclear force mediated by
the gluons have to be considered explicitly in the usual
approximations. The electrons are retained as elemen-
tary particles and interact with the nuclei through the
electromagnetic force and the weak force. The gravita-
tional force between electrons and nuclei is sufficiently
weak to be neglected except for large assemblies of par-
ticles, with a large total mass. The weak nuclear force
is frequently neglected, although it can be of impor-
tance under special circumstances, particularly in chiral
molecules, to which we return in Section 1.7. Usually,
quantum chemistry and quantum molecular dynamics

retain only the electromagnetic force. One can then in-
troduce further approximations in several steps.

Quantum chemistry in principle treats the quan-
tum dynamics of atoms and molecules by solving the
equations of motion for electrons and nuclei to ob-
tain quantum states of atoms (see, for instance, Yam-
aguchi and Schaefer (2011) as well as Reiher and Wolf
(2009)). In molecules one can introduce as a further
step the Born–Oppenheimer approximation (or similar
“adiabatic” approximations for the electronic structure),
which provides effective potentials for the motions of
nuclei or “atoms” as effective elementary particles, the
dynamics of which is treated in a space of dimension
3N , where N is the number of atoms, whereas the space
of the complete atomic and molecular dynamics would
be 3N + 3n where n is the often large number of elec-
trons. Cederbaum (2004) presents a particularly clear
account of the theory, which is also discussed in more
detail in Section 1.4 below. The Born–Oppenheimer po-
tential hypersurfaces defining the forces between atoms
are given in a space of dimension 3N − 6(5) noting the
3 translational and 3(2) rotational degrees of freedom
where the numbers in parentheses apply to linear di-
atomic molecules. Molecular quantum dynamics can
often be treated with these approximations quite suc-
cessfully in applications to molecular spectroscopy and
kinetics (Carrington, 2011; Marquardt and Quack, 2011;
Breidung and Thiel, 2011; Tennyson, 2011), see also
Chapter 2 of the present book (Császár et al., 2020).

For a wide range of applications one introduces as a
further approximation the use of the classical (“Newto-
nian”) equations of motion for the atoms under the in-
fluence of the Born–Oppenheimer electronic potentials
or other approximate potentials or force fields (Karplus,
2014; van Gunsteren et al., 2006; Car and Parrinello,
1985; Bunker, 1971, 1977; Hase, 1976, 1981, 1998) ,
see also Chapter 6 (Vaníček and Begušić, 2020).

We shall briefly summarize in the following sub-
sections the foundations of the classical and quantum
equations of motion.

1.2.2 Classical Mechanics and Quantum
Mechanics

We follow here almost literally the presentation by
Merkt and Quack (2011b). Many systems in both clas-
sical and quantum mechanics can be described by the
motion of interacting point particles, where the physical
“particles” are replaced by points of mass mk with posi-
tion at the center of mass of the particle. For planetary
systems, the “particles” would be the sun and planets
with their moons (plus planetoids and artificial satel-
lites, etc.). For atomic and molecular systems the “point
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particles” can be taken to be the nuclei and electrons
to within a very good approximation or the “atoms”
within the less good Born–Oppenheimer approxima-
tion.

In classical dynamics one describes such an N parti-
cle system by a point in the mathematical phase space,
which has dimension 6N with 3N coordinates (for in-
stance, Cartesian coordinates xk , yk , zk for each particle
“k”) and 3N momenta pxk , pyk , pzk . Such a point in
phase space moving in time contains all mechanically
relevant information of the dynamical system. In the
19th century Hamiltonian formulation of classical me-
chanics, one writes the Hamiltonian function H as a
sum of the kinetic (T ) and potential (V ) energy,

H = T + V, (1.2)

in terms of generalized coordinates qk and their con-
jugate momenta pk (Landau and Lifshitz, 1966; Gold-
stein, 1980; Iro, 2002). Following Hamilton, one ob-
tains the canonical Hamiltonian differential equations
of motion accordingly

dqk

d t
= q̇k =

(
∂H

∂pk

)
, (1.3)

dpk

d t
= ṗk = −

(
∂H

∂qk

)
. (1.4)

The dynamics of the classical system is thus obtained
from the solution of 6N coupled differential equations.
Provided that one knows some exact initial condition
for one point in phase space, all future and past states of
the system in terms of the set {qk(t), pk(t)} can be cal-
culated exactly. Further considerations arise if the initial
state is not known exactly, but we shall not pursue this
further.

One approach to quantum dynamics replaces the
functions H , pk , qk by the corresponding quantum me-
chanical operators (Ĥ , p̂k , q̂k) or their matrix represen-
tations (H , pk , qk) resulting in the Heisenberg equa-
tions of motion (Heisenberg, 1925; Dirac, 1958):

d q̂k

d t
= 2π

ih

[
q̂k, Ĥ

]
, (1.5)

d p̂k

d t
= 2π

ih

[
p̂k, Ĥ

]
, (1.6)

which involve now Planck’s quantum of action (or con-
stant) h, and i =

√
−1. Following Dirac (1958), these

equations are the quantum-mechanical equivalent of
the Poisson-bracket formulation of classical mechan-
ics, and one can, in fact, derive the corresponding clas-
sical equations of motion from the Heisenberg equa-
tions of motion, if one uses quantum mechanics as the

more fundamental starting point, as discussed by Saku-
rai (1985), for instance. Eqs. (1.5) and (1.6) contain the
commutator of two operators Â and B̂ in general nota-
tion,

[
Â, B̂

]
= ÂB̂ − B̂Â. (1.7)

As quantum mechanical operators and their matrix rep-
resentations do not in general commute, this introduces
a new element into quantum mechanics as compared
to classical mechanics. For instance, in Cartesian coor-
dinates the coordinate operator xk is simply multiplica-
tive, while the momentum operator p̂xk is given by the
differential operator

p̂xk = h

2π i
∂

∂xk
, (1.8)

leading to the commutator

[
x̂k, p̂xk

]
= ih/(2π) (1.9)

and the corresponding Heisenberg uncertainty relation
(Messiah, 1961)

"xk"pxk ≥ h/(4π) (1.10)

where "xk and "pxk are defined as the root mean
square deviations of the corresponding ideal measure-
ment results for the coordinates xk and momenta pxk .
Similar equations apply to yk , zk with pyk , pzk , etc., for
all particles labeled by their index k. It is thus impos-
sible in quantum mechanical systems to know exper-
imentally the position of the “point in phase space”
to better than allowed by the Heisenberg uncertainty
relation in a quantum mechanical state. In classical me-
chanics, on the other hand, xk and pxk , etc., commute,
and the point in phase space can be defined and mea-
sured with arbitrary accuracy, in principle.

A somewhat more complex reasoning leads to a
similar “fourth” uncertainty relation for energy E and
time t ,

"E"t ≥ h/(4π). (1.11)

We note that Eqs. (1.10) and (1.11) are strictly inequali-
ties, not equations in the proper sense. Depending on
the system considered, the uncertainty can be larger
than what would be given by the strict equation. If the
equality sign in Eqs. (1.10), (1.11) applies, one speaks of
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a “minimum uncertainty state or wavepacket 2” (see be-
low). The commutators in Eqs. (1.5), (1.6) are readily
obtained from the form of the kinetic energy operator
in Cartesian coordinates:

T̂ = 1
2

N∑

k=1

(
p̂2

xk

mk
+

p̂2
yk

mk
+

p̂2
zk

mk

)

(1.12)

and

Ĥ = T̂ + V̂ (1.13)

if the potential energy V̂ is a multiplicative function of
the coordinates of the particles (for instance, with the
Coulomb potential for charged particles).

While this so-called Heisenberg representation of
quantum mechanics is of use for some formal aspects
and also certain calculations, frequently the “Schrödin-
ger representation” turns out to be useful in spec-
troscopy and quantum dynamics.

1.2.3 Time Evolution Operator Formulation
of Quantum Dynamics

The time dependence of the operators p̂k and q̂k in the
Heisenberg equations of motion and, indeed, the time
dependence of every operator Q̂ in the Heisenberg rep-
resentation is given by Eq. (1.14),

Q̂(t) = Û † (t, t0)Q̂(t0)Û(t, t0). (1.14)

Here t0 is the initial time and t the time after some
evolution. The operator Û satisfies the differential equa-
tion

i
h

2π

∂Û (t, t0)

∂t
= Ĥ Û (t, t0). (1.15)

Thus, in general one has to solve this differential
equation in order to obtain Û(t, t0). If, however, Ĥ does
not depend upon time, Û(t, t0) is given by the equation

Û (t, t0) = exp
[
−2π i

h
Ĥ · (t − t0)

]
. (1.16)

The exponential function of an operator Q̂, as well as
that of a matrix representation of this operator, is given
by Eq. (1.17),

2In this book, these terms are written in a single word ‘wavepacket’,
‘wavefunction’ or in separate words ‘wave packet’, ‘wave function’; while
the separate form is more frequently found, and is also sometimes sep-
arated by a hyphen, all forms are currently being used and are accepted.

exp(Q̂) =
∞∑

n=0

Q̂n

n! , (1.17)

Û (t, t0) thus “propagates” the operators p̂k , q̂k , etc.,
from time t0 to time t and is often called “propagator”.
Also Û provides the solution for the time-dependent
Schrödinger equation for the wave function2 (,

i
h

2π

∂((x1, y1, z1 , . . . , xn, yn, zn, t)

∂t

= Ĥ ((x1, y1, z1 , . . . , xn, yn, zn, t). (1.18)

In the Schrödinger formulation of quantum me-
chanics (“wave mechanics”), one introduces the “wave
function” ( (x1, y1, z1, . . . xn, yn, zn, t) depending on
the particle coordinates and time, and satisfying the dif-
ferential equation (time-dependent Schrödinger equa-
tion, Eq. (1.18)).

The physical significance of the wave function (

(also called state function) can be visualized by the
probability density

P(x1, y1, z1 , . . . , xn, yn, zn, t)

= ((x1, . . . , zn, t)(∗(x1, . . . , zn, t)

= |((x1, . . . , zn, t)|2 (1.19)

where P is real, positive or zero, whereas ( is, in gen-
eral, a complex-valued function. Moreover,
P(x1, y1, z1 , . . . , zn t)dx1dy1d z1 · · ·d zn gives the prob-
ability of finding the quantum mechanical system of
point particles in the volume element (dx1 · · · d zn) at
position (x1, . . . , zn) at time t .

The differential operator in Eq. (1.18) is sometimes
called energy operator Ê,

Ê = i
h

2π

∂

∂t
, (1.20)

thus one can write

Ê ((r, t) = Ĥ ((r, t), (1.21)

where we introduce the convention that r represents in
general a complete set of space (and spin) coordinates
and includes the special case of systems depending only
on one coordinate which then can be called r .

The solution of Eq. (1.18) has the form

((r, t) = Û (t, t0)((r, t0). (1.22)

One of the most important properties of ( is that it
satisfies the principle of linear superposition. If (1(r, t)
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FIG. 1.2 Spectral decomposition schemes: Illustration of spectral decomposition of a time-dependent
state where pk(Ek) = |ck |2 is the probability of measuring the eigenvalue Ek in the time-dependent state
given by ((r, t): (A) irregular spectrum and distribution; (B) harmonic oscillator with a Poisson distribution
(after Merkt and Quack, 2011b).

and (2(r, t) satisfy Eq. (1.18) as possible representa-
tions of the dynamical state of the system, then the
linear superposition

((r, t) = c1(1(r, t) + c2(2(r, t) (1.23)

is also a possible dynamical state satisfying Eq. (1.18),
as is readily shown, given that Ĥ is a linear operator
and c1, c2 are complex coefficients. However, ((r, t), in
general, is not an eigenstate of Ĥ . In the special case
of stationary states leading to the time-independent
Schrödinger equation, we assume that Ĥ does not
depend on time. We consider the special case where
(k(r, t) is an eigenfunction of Ĥ with eigenvalue Ek .
Thus

Ĥ (k(r, t) = Ê(k(r, t) = Ek(k(r, t). (1.24)

The solution for this special case is given by Eq. (1.25),

i
h

2π

∂(k(r, t)

∂t
= Ek(k(r, t) = Ekψk(r) exp(−2π i

Ekt

h
),

(1.25)

where, Ĥ being independent of time, one can divide
both sides in Eq. (1.24) by exp(−2π iEkt /h) and obtain

Ĥ ψk(r) = Ekψk(r). (1.26)

The eigenfunctions of Ĥ are called stationary states,

(k(r, t) = ψk(r) exp(−2π i
Ekt

h
). (1.27)

The name for stationary states is related to the time in-
dependence of the corresponding probability density

P(r, t) = (k(r, t)(∗
k (r, t) = |(k(r, t)|2 = |ψk(r)|2 .

(1.28)

The time-independent Schrödinger equation (1.26) is
thus derived as a special case from the time-dependent
Schrödinger equation.

Making use of the superposition principle (Eq.
(1.23)), the general solution of the Schrödinger equa-
tion results as follows:

((r, t) =
∑

k

ckψk(r) exp(−2π i
Ekt

h
) =

∑

k

ck(k(r, t).

(1.29)

If Ĥ does not depend on time, such as in the case of
isolated atomic and molecular systems, the coefficients
ck are time independent, generally complex coefficients.
According to the principle of spectral decomposition,
the probability of measuring energy Ek in the time-
dependent state given by Eq. (1.29) is

pk (Ek) = |ck |2 = ckc
∗
k . (1.30)

Thus, with time-independent Ĥ , the pk are independent
of time, as is also the expectation value of the energy

⟨E(t)⟩ =
∑

|ck |2 Ek. (1.31)

Fig. 1.2 illustrates the spectral decomposition for two
types of spectra. The energy in a time-dependent state
is therefore not a well-defined quantity but is char-
acterized by a statistical distribution given by pk in
Eq. (1.30). This distribution satisfies the uncertainty re-
lation given by Eq. (1.11). For further discussion and
the numerical approaches to realize solutions of the
Schrödinger equation, we refer to Section 1.3.

We conclude this section by mentioning the special
limiting case of scattering theory and S-matrix theory
used therein. Formally, the S-matrix in a collision be-
tween two (or more) collision partners can be consid-
ered to be a limiting case of the matrix representation of
the time evolution operator in the basis of the scattering
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channels related to the quantum states of the scattering
partners at infinite distance “i” before and “f ” after the
collision), i.e.,

Sf i = Uf i(t = +∞, t = −∞). (1.32)

For a more detailed introduction of collision and S-
matrix theory, we refer to the books of Newton (1966),
Clary (1986), and Schatz and Ratner (1993).

1.2.4 Further Approaches to Quantum
Mechanics and Molecular Dynamics

The Schrödinger and Heisenberg approaches are cer-
tainly the most widely used approaches towards time
dependent and time independent quantum dynamics
(often introduced as the Schrödinger and Heisenberg
“pictures” of quantum mechanics). We shall briefly
mention here a few further approaches to molecu-
lar quantum dynamics which have found wider use.
Apart from the entirely classical molecular dynamics
approaches, which we have already mentioned, there
are also the so-called “semiclassical” methods of quan-
tum dynamics, which have their historical roots in the
“old quantum theory” of Bohr (1913a,b,c). One of these
is the Wentzel (1926), Kramers (1926), and Brillouin
(1926) (abbreviated WKB) approximation to quantum
mechanics, which has found wide use, for instance, also
for quantum mechanical tunneling problems, as dis-
cussed in Chapters 7 (Quack and Seyfang, 2020) and 9
of this book (Cvitaš and Richardson, 2020). A more
recent development is the semiclassical limit quantum
mechanics by Miller (1974, 1975b). Another, in prin-
ciple rigorous approach is the so-called path integral
quantum mechanics, which is commonly attributed to
Feynman (1948), but has its historical origin in the
early work of Gregor Wentzel (1924) (the successor of
Schrödinger in Zürich in 1928, see also Freund et al.,
2009; Antoci and Liebscher, 1996). Path integral quan-
tum mechanics with its important numerical imple-
mentations has been extremely fruitful in recent times
as an alternative approach to quantum dynamics, and
substantial books have been written on this approach
(Feynman and Hibbs, 1965; Kleinert, 2009). Marx and
Parrinello (1996), Tuckerman et al. (1996) as well as
Chapters 6 (Vaníček and Begušić, 2020) and 9 (Cvitaš
and Richardson, 2020) in the present book refer also
to path integral methods. Numerical implementations
of path integral methods were published in computer
code packages (Ceriotti et al., 2010, 2014; Kapil et al.,
2019).

Finally, Diffusion Quantum Monte Carlo (DQMC)
methods have found much recent application as a rigor-
ous approach to numerically solve the time-independent

Schrödinger equation as a first step towards solving then
also the time-dependent Schrödinger equation. DQMC
follows an idea originally attributed to Fermi (Metropo-
lis and Ulam, 1949) and introduced into quantum
chemistry as a numerically practical approach in the al-
gorithmic implementation by Anderson (1975, 1976).
DQMC makes use of the interesting isomorphism be-
tween the N -body time-dependent Schrödinger equa-
tion propagated in an imaginary time equivalent τ =
2π it/h with dimensions of a reciprocal energy and a
3N dimensional transport equation (with diffusion and
source/sink terms) in Cartesian coordinate space,

∂(

∂τ
= −Ĥ(, (1.33)

Ĥ = T̂ + V̂ = −
N∑

k=1

∇2
k

2mk
+ V. (1.34)

Here Ĥ is a time-independent Hamiltonian with ki-
netic energy T̂ and potential energy V̂ , having eigen-
values E0 ≤ E1 ≤ · · · ≤ Ek and eigenfunctions (0, (1,
etc. By numerically simulating a diffusion process as
a quasi-statistical process, one can converge towards
obtaining the ground state energy and wavefunction,
as well as, with appropriate techniques making use of
symmetry and nodal properties, also excited state re-
sults. The approach is conceptually and numerically
interesting as it provides statistical upper and lower
bounds on the energies E0 (possibly E1, etc). It has
been used for both electronic structure and vibrational–
rotational dynamics (Anderson, 1975, 1976; Reynolds
et al., 1982; Ceperley and Alder, 1986; Coker and Watts,
1986; Garmer and Anderson, 1988; Bernu et al., 1990;
Quack and Suhm, 1991; Lewerenz and Watts, 1994;
Quack and Suhm, 1998; Tanaka et al., 2012). The pos-
sibility of simulating the quantum mechanics of a rel-
atively large number of particles, as well as the upper
and lower bound property of the solutions, is of inter-
est. Limitations arise in obtaining excited state energies
and wavefunctions, although this is possible as well, as
discussed in Chapter 7 of this book (Quack and Sey-
fang, 2020) in applications to tunneling.

1.2.5 Time-Dependent Quantum Statistical
Dynamics

When one wishes to consider the time evolution of a
physical system, the initial state of which might be char-
acterized by a statistical distribution of a mixture of
different “pure quantum states”, it is useful to define
a density operator given by Eq. (1.35) (Messiah, 1961;
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Sakurai, 1985):

ρ̂(t) =
∑

n

pn |(n⟩ ⟨(n| (1.35)

satisfying the Liouville–von Neumann equation

i
h

2π

dρ̂(t)

dt
=

[
Ĥ , ρ̂(t)

]
(1.36)

with the solution

ρ̂(t) = Û(t, t0)ρ̂(t0)Û † (t, t0). (1.37)

This equation is of particular importance for statistical
mechanics.

In many applications one can usefully introduce re-
duced density matrices, which describe only a subsys-
tem of the total quantum statistical mechanical system,
with the understanding that only the knowledge of the
time-dependent behavior of this small subsystem is of
interest in an experiment. Often one uses then simple
kinetic models for the matrix representation of the re-
duced operator. For instance, for the simple reduced
density matrix with just two states, the diagonal ele-
ments (P11,P22) describe the time-dependent popula-
tions of the two levels and the off-diagonal elements
their “coherences” (P12,P21). The time-dependent re-
laxation of the populations towards equilibrium might
be assumed to be exponential with a relaxation time τ1,
whereas the coherences (P12,P21) decay to zero with
a relaxation time τ2. Of course, there is no guarantee
that such a simple model will be a good approxima-
tion, and there is no need to restrict to just two states. In
any case the idea of the reduced density matrix descrip-
tion is to treat a problem of small size (perhaps matrices
of the order of 1000), whereas the complete quantum
statistical system might have to be described by matri-
ces easily exceeding 101000. These reduced density ma-
trix approaches are widely used in magnetic resonance
(Ernst et al., 1987; Schweiger and Jeschke, 2001), but
also more generally (Blum, 1981). In principle, one can
also simulate statistical behavior by random ensembles
of solutions of the Schrödinger equation (Marquardt
and Quack, 1994).

Another approach to simplify the quantum dynam-
ical treatment of large microscopic or “mesoscopic”, or
even macroscopic systems, by statistical methods goes
back to Pauli (1928). Here one starts from the time-
dependent Schrödinger equation of the complete sys-
tem involving a very large number of quantum states
but considers only coarse-grained sums (or averages) of

individual state populations pk to derive coarse-grained
level populations

pK =
∑

k

′pk(K) =
x+NK∑

k=x+1

bk(K)b
∗
k(K). (1.38)

By a nontrivial reasoning, which considers the emer-
gence of simple structures for such average (or summed
coarse grained) quantities, one obtains Master Equa-
tions of low dimension (Quack, 1981, 2014a,b):

dp(t)

dt
= K p(t), (1.39)

p(t) = Y (t, t0)p(t0), (1.40)

Y (t, t0) = exp[K(t − t0)]. (1.41)

The sums
∑ ′ in Eq. (1.38) with pk(K) and bk(K) are

implied to be restricted to quantum “states” k, ranging
between some counting index x + 1 and x + Nk and be-
longing to the “level” K , with Nk being the number of
such states, which may possibly be very large. The rate
coefficient matrix K has matrix elements KMN which
can be derived from quantum-mechanical perturbation
theory or by other methods. In recent times classical tra-
jectory calculations (i.e., classical molecular dynamics)
have been proposed and used to calculate the “rate co-
efficient matrix” KMN (Nüske et al., 2014), following
otherwise similar lines of thinking as in Quack (1978,
1979, 1981), where a calculation of KMN by means
of quantum mechanical perturbation theory or other
quantum approaches was implied.

Using a theorem originally due to Frobenius (von
Mises, 1931), one can further simplify the mathematics
by considering the rapid convergence of the solutions
of Eq. (1.39) with only a small number of eigenval-
ues (λ1,λ2,λ3, . . . ) of K . For some of the earlier dis-
cussion of these approaches, we refer to Quack (1979,
1981, 1982). We also note that the differential equation
(1.39) can be of the “Pauli Master equation” type (Pauli,
1928, case B in Quack, 1978) or of a more general na-
ture (cases A, B, C, D in Quack, 1978), where the “case
A” is the well known “Fermi Golden Rule” and is a very
special long known case (Wentzel, 1927, 1928) (some
historical aspects are discussed by Merkt and Quack,
2011a), which has been rigorously derived for a model
of electronic relaxation in large molecules by Bixon and
Jortner (1968), and Jortner et al. (1969).

This “Fermi Golden Rule” (case A) can be considered
as a “statistical” case because the product state popu-
lations are summed following Eq. (1.38). We can note
here also that classical molecular dynamics by classical
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trajectories can be considered to be a statistical approx-
imation to quantum dynamics when averaging over
the initial conditions corresponding to a pure quan-
tum state, when the latter is simulated by a statistical
distribution in phase space (Quack and Troe, 1981).
Although one might assume that statistical averages in
classical dynamics might be a better approximation to
quantum dynamics than just a straight phase space tra-
jectory, there are, of course, quantum phenomena such
as tunneling, which are not “averaged out” by statisti-
cal averaging (Quack and Seyfang, 2020, Chapter 7 of
this book). Sometimes in classical molecular dynamics
simulations of biomolecular systems such as proteins
(Karplus, 2014; van Gunsteren et al., 2006), it is ar-
gued that, while the motion of the light H-atoms in
the protein may well be quantum-like, the motion of
the “heavy atom” framework (C, N, O, etc.) of the pro-
tein behaves classically. However, simulations of pro-
cesses involving essential motion of even heavier atoms
such as fluorine in the dissociation of the dimer (HF)2
indicate large differences between quantum and classi-
cal results (Manca et al., 2008). Sometimes one might
consider a combination of classical trajectory calcula-
tions for a part of the problem with a quantum sta-
tistical theory such as the statistical adiabatic channel
model (Quack and Troe, 1981, 1998; Troe et al., 2005;
Troe, 2006). Of course, the ultimate quantum statisti-
cal limit widely used in reaction kinetics is transition
state theory for which various quantum dynamical ver-
sions have been formulated, such as the statistical adi-
abatic channel model (SACM, Quack and Troe, 1974,
1998) or semiclassical and quantum transition state
theory (Miller, 1975a, 2014) beyond the original theory
for thermal rate constants both in the classical mechani-
cal and quantum mechanical versions (for the historical
references see Chapter 7 in the present book, Quack and
Seyfang, 2020).

In the debate on the validity of classical dynamics
for describing the atomic motions on quantum Born–
Oppenheimer potential hypersurfaces, it is often argued
that the high degree of averaging in thermal situations
justifies the use of classical mechanics. This point of
view can be rejected with an argument given by Quack
and Troe (1981): If we calculate the forward and back-
ward rates of a thermal reaction by classical dynamics,
the ratio of the rate constants results in the classical sta-
tistical thermodynamic limit for the equilibrium con-
stant, which is known to be highly inaccurate by com-
parison with the easily accessible quantum statistical
equilibrium constants. Thus the individual rate con-
stants cannot be accurate.

1.3 METHODS FOR SOLVING THE
TIME-DEPENDENT SCHRÖDINGER
EQUATION

In this section we write the time-dependent Schrödinger
equation in the form

i h
2π

∂|((t)⟩
∂t

= Ĥ |((t)⟩ (1.42)

where |((t)⟩ represents the time dependent state of the
system under investigation. Following the mathemati-
cal foundations of quantum mechanics (von Neumann,
2018), states are vectors, for which Dirac’s notation is
used here and essentially throughout the following sec-
tion, where methods to solve Eq. (1.42) will be re-
viewed. The specific form of the molecular Hamiltonian
is addressed in Section 1.4, and appropriate choices of
coordinates used to describe the position of the parti-
cles composing a molecule are discussed in Section 1.5.

To solve Eq. (1.42) in practice, in particular to obtain
numerical solutions for it, states and operators are rep-
resented in a finite set of states LN = {|χ1⟩, . . . , |χN ⟩}
that is well defined in advance, and for which a scalar
product ⟨χn|χm⟩ can also be defined; these states can al-
ways be defined to be orthonormal, i.e., ⟨χn|χm⟩ = δnm,
where δnm is the Kronecker symbol (Cohen et al., 2007).

The state |((t)⟩ is then represented by a time-
dependent vector b(t), the so-called state vector, the com-
ponents of which are the projections bn(t) = ⟨χn|((t)⟩:

|((t)⟩ =
N∑

n=1

bn(t) |χn⟩. (1.43)

Operators are represented by matrices, i.e., Ĥ is rep-
resented by a matrix H ; the element Hnm is given by the
scalar product of ⟨χn| with Ĥ |χm⟩, Hnm = ⟨χn|Ĥ |χm⟩.
In this representation, Eq. (1.42) becomes

i h
2π

d
dt

b(t) = H b(t). (1.44)

The set LN is a subspace of the entire linear space
in which the quantum mechanical states exist. Because
of the finiteness of N , the representation given by Eqs.
(1.43) and (1.44) is normally an approximation of the
true physical situation, which can be improved system-
atically, the larger N is made. The symbols |((t)⟩ and
b(t) denote two different types of vectors: the former is
defined in the actual space of quantum states, the lat-
ter is defined in the dual space of the linear subspace
LN ; mathematically the former is a covariant vector, the
latter a contravariant vector. It is important to note that,
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while a quantum mechanical state |(⟩ is basis set inde-
pendent, the state vector is a contravariant vector, and
as such dependent on the specific choice made for the
basis states used to set up LN . A more detailed notation
for it would therefore be b(χ); if a different basis of or-
thonormal states is used, say LN = {|η1⟩, . . . , |ηN ⟩}, the
corresponding state vector would be b(η). However, for
the sake of simplicity, and when any ambiguity can be
discarded, we drop the specific indication to the chosen
basis in the notation.

If the system under investigation is isolated, i.e., the
Hamiltonian does not depend on time, Ĥ (t ′) = Ĥ (t ′′),
for all t ′ and t ′′, its total energy is conserved, and
Eq. (1.42) has the special solutions

|(n⟩(t) = |ψn⟩ exp
(

−2π i
En

h
t

)
(1.45)

where the states |ψn⟩ are the solutions of the time-
independent Schrödinger equation

Ĥ |ψn⟩ = En |ψn⟩ (1.46)

at the specific energies En. Mathematically they are the
eigenstates of Ĥ and the En are their energies; they
describe the spectroscopic states of the isolated system,
and energy differences En − Em correspond to poten-
tially observable spectral lines νnm = (En − Em)/h. Be-
cause of their simple time dependence, as noted from
Eq. (1.45), spectroscopic states are also called station-
ary states. Eq. (1.45) is indeed equivalent to Eq. (1.27),
because (k(r, t) = ⟨r|(k(t)⟩ and ψk(r) = ⟨r|ψk⟩. And so
are Eqs. (1.46) and (1.42) equivalent to Eqs. (1.21) and
(1.18), respectively.

For isolated systems, Eq. (1.44) may be solved for-
mally, by setting b(t) = U(t, t0)b(t0), where

U(t, t0) = exp
(

−i
2π

h
H (t − t0)

)
(1.47)

is the matrix representation of the time evolution oper-
ator (see also Eq. (1.16)). For time-dependent Hamil-
tonians, the formal integration is more complex. For
instance, in the so-called Magnus expansion (Magnus,
1954), as reviewed by Quack (1978, 1982) and Blanes
et al. (2009), the integration involves nested commu-
tators of the Hamiltonian at different times, see also
Eq. (1.100), Section 1.6.3.

1.3.1 Spectral Decomposition Method
When the Hamiltonian is independent of time, the nat-
ural method suggested by Schrödinger (1926a,b,c,d,e)
to solve Eq. (1.42) is to determine prior solutions of

Eq. (1.46) and use an appropriate finite subset of solu-
tions LN = {|ψ1⟩, . . . , |ψN ⟩}. The time-dependent wave
function may then be given such as in Eq. (1.43), see
also Eq. (1.29),

|((t)⟩ =
N∑

n=1

bn(t) |ψn⟩ (1.48)

with

bn(t) = bn(0) exp(−2π iEn t/h) (1.49)

and bn(0) = ⟨φn|((0)⟩
However, it is difficult to know the stationary states

in advance (see also Chapter 2 of this book (Császár
et al., 2020)). It is reasonable to conjecture, that an ap-
proximate knowledge of these states could help simplify
the calculation and interpretation of molecular quan-
tum dynamics.

In practice, the direct way in this case is to solve
Eq. (1.46) by first representing Ĥ in a given basis set
LN = {χ1, . . . ,χN } and diagonalizing the thus obtained
matrix H . The time evolution operator is then given as

U(t − t0) = Z U (d)(t − t0) Z† (1.50)

where U (d)(t − t0) is a diagonal matrix,

U
(d)
nm (t − t0) =

{
exp(−2π iEn(t − t0)/h), n = m,

0, n ≠ m,

(1.51)

En are the eigenvalues of H , and the matrix Z
is composed of N column vectors z1, . . . ,zN , which
are the representations of the eigenvectors of H in
LN . Eq. (1.52) is the corresponding representation of
Eq. (1.46),

H zn = En zn. (1.52)

The number of floating point operations involved
in the diagonalization with full determination of all
eigenstates increases with N3. Currently, diagonaliza-
tion algorithms in standard linear algebra program li-
braries straightforwardly handle matrices with ranks up
to N = 50 000, although computation time and storage
space of vectors and matrices increase rapidly with the
rank.

In multidimensional spaces, the linear space of wave
functions can be represented by a simple tensor prod-
uct of one-dimensional spaces. Let d be the number
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of dimensions to be considered and let M be the av-
erage number of one-dimensional basis functions; then
N = Md , and the number of floating point operations
is M3d . For d > 5, typically, the spectral decomposition
method becomes essentially impractical, unless some
special measures are taken to optimize the size of the
original representation basis, e.g., by suitably compress-
ing basis vectors, or by applying collocation methods
(Avila and Carrington, 2015). This issue is also dis-
cussed in Chapter 2 of this book (Császár et al., 2020).

These technical drawbacks are the only serious disad-
vantages of the spectral decomposition method. When-
ever possible, this method should be given preference
to other methods discussed below for three main rea-
sons: Firstly, one can compare the calculated energy
values with those derived from high-resolution spec-
troscopy, which are frequently available with very high
accuracy, and thus test some of the underlying approxi-
mations, for instance, the potential energy surface (PES)
used for the nuclear dynamics; other observables, such
as the transition dipole moments, can also be directly
compared. Secondly, it is very easy to vary the initial
condition of the dynamical calculation with almost no
additional computational effort. Finally, with the spec-
tral decomposition method, one can design suitable ap-
proximations, such as the quasiresonant approximation
for coherent excitation (see Section 1.6 below), which
allows for accurate long-time propagation that is not
easily accessible with the direct approaches to be dis-
cussed in the following sections.

1.3.2 Linearization
The operational simplest method to obtain the time
evolution operator is to consider the Taylor expansion
of the exponential function in Eq. (1.47). For “small”
displacements along the time axis, "t = t − t0, the op-
erator in Eq. (1.47) may be approximated by the lin-
earized operator

U lin("t) = I − i
2π

h
H "t. (1.53)

Here, I is the identity matrix. Hence, the state vector at
time tk = k "t + t0 (k > 0) is given as a linear function
of the state vector at time tk−1,

b(tk) = b(tk−1) − i
2π

h
"t H b(tk−1). (1.54)

There is an error of the order "t2 at each time step,
and the integrated error increases with the total evolu-
tion time by error propagation. Following the uncer-
tainty relation Eq. (1.11), appropriate time step sizes

FIG. 1.3 Population evolution P(t) = cos2(π t/τ ) of an
initially 100% populated level in a simple scheme of two
isoenergetic levels coupled by an interaction energy
V = h/(2τ ) (black line). The blue line yields the result from
the simple linearized formula in Eq. (1.54) with a propagation
step "t = 0.033 τ . The red line is from the second order
formula in Eq. (1.55) – it essentially overlaps with the black
line in the main figure. The dots are the results at times
tn = n × τ (n = 0,1,2, . . .) and their collection is displayed in
the insert by lines in the corresponding color – the blue line
is hardly seen because of the fast increase of the
propagation error, the black line is the exact solution.

should satisfy the condition "t ≪ h/"E, where "E is
a typical transition or coupling energy.

What is typically a sufficiently small "t? This ques-
tion seems odd, in particular in studies of ultrafast
processes, as one might naively think that the process
will be over before error has accumulated significantly.
Fig. 1.3 shows, as an example, a simple two-level dy-
namics, where a quantum state is coupled resonantly
via a coupling constant V to a second, isoenergetic
quantum state – this is the simplest model of a quan-
tum mechanical tunneling motion and can also be used
to discuss the monochromatic excitation between two
quantum states, see Section 1.6.6 below. The exact evo-
lution P(t) = cos2(π t/τ ) of the population of the initial
state is shown there as a black line; τ = h/2V is the
typical evolution time. The blue line shows the same
evolution calculated via Eq. (1.54). Quite impressively,
the accrued propagation error becomes as large as 30%
after just one period of the evolution, if "t is only 3%
of the typical evolution time τ . There is also error prop-
agation in terms of the phases of the time evolving state
vector, which is not shown here.

As can be seen from the figure, the error increases
rapidly and is already 100% after just two periods be-
cause of error propagation. The strong increase of the
population goes inline with a severe nonconservation
of the norm, which is an unacceptable nonphysical be-
havior. The error can be much reduced via the use of a
second order formula which relies on the evaluation of
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the wave function at two earlier time steps tk and tk−1
(Kosloff and Kosloff, 1983a) – this formula is related to
the Crank–Nicholson method (Bachau et al., 2001):

b(tk+1) = b(tn−1) − i
4π

h
"t H b(tn). (1.55)

The corresponding evolution is given in Fig. 1.3 by
the red line. Even if the error can be much reduced by
the second-order linear formula in the case of the sim-
ple example discussed here, it can still be quite impor-
tant at a longer time evolution, as shown by the insert
of Fig. 1.3 or in more complex situations where many
states with different sizes of couplings are involved. The
sole remedy for this simple algorithm is to reduce dras-
tically the linear evolution time step "t , at the cost
of having a huge number of sequential matrix vector
multiplications to perform if a longer time evolution is
needed.

A very detailed discussion on error accumulation was
given by Marquardt and Quack (1989) on the basis of
an exactly solvable model for femtosecond multipho-
ton excitation in the infrared (see also Section 1.6 be-
low).

Despite the important error propagation inherent to
the linearized propagator, the simplicity of the method
is appealing, in particular when the system is very com-
plex. In such cases even a simple matrix–vector multi-
plication as that of Eq. (1.54) can become highly time
consuming because the dimension of the linear space
becomes very large. Therefore the simpler the algorithm,
the easier its implementation. More advanced methods
exist, however. Sophisticated predictor–corrector algo-
rithms are typically employed to solve nonlinear ordi-
nary differential equations (Gear, 1971; Shampine and
Gordon, 1975; Beck et al., 2000) and may be imple-
mented to optimize dynamically the time step and in
this way contribute to reduce error accumulation. Such
algorithms are used in the MCTDH program package
discussed below.

1.3.3 The “Chebychev” Method
Some methods make explicit use of higher order expan-
sions of the propagator. As an alternative to expanding
the exponential function in Eq. (1.47) in terms of pow-
ers of the argument, it may be expanded in terms of
polynomials.

Tal-Ezer and Kosloff (1984) used an expansion in
terms of Chebychev polynomials Tk(z) (Courant and
Hilbert, 1968), which are defined for −1 ≤ z ≤ 1. Light
and Carrington (2000) and Beck et al. (2000) dis-
cuss several characteristic properties of these polynomi-
als, relevant for the application in quantum dynamics.

This method has since then been used in varied forms
mainly in scattering quantum dynamics.

This method works as follows: First, upper (Emax)
and lower (Emin) bounds for the largest and lowest
eigenvalues of H , respectively, need to be known, at
least approximately. These may be estimated straight-
forwardly for finite matrix representations (Carrington,
2011). Then, the time evolution operator may be written
as (Tal-Ezer and Kosloff, 1984)

U cheb(t + "t, t) = exp
(

i
2π

h
ES "t

)

×
kmax∑

k=0

(2 − δk0) Jk

(
2π

h
ED "t

)
Tk

(
2π

h
H "t

)

(1.56)

where ES = 1/2(Emax + Emin), ED = 1/2(Emax −
Emin), and Jk are Bessel functions of the first kind of
order k (Courant and Hilbert, 1968). To evaluate the
Chebychev polynomial of degree k on the state vector,
the recursion formula

Tk (M) = 2M Tk−1 (M) + Tk−2 (M) (1.57)

is used, with T0(M) = I and T1(M) = M . The Bessel
functions of the first kind have the property that
Jk(x) ≈ 0 for k ≥ x. If the maximal order considered
in Eq. (1.56) is chosen such that kmax ≥ 2πED "t/h,
the propagation error can be made as small as desired.

The Chebychev method has been recently applied
in the scattering quantum dynamics of triatomic (Zhou
and Xie, 2015) and tetraatomic systems (Song and Guo,
2015), in full-dimensional rovibrational quantum dy-
namics of ammonia isotopomers (Fábri et al., 2019),
but also in spin noise calculations of semiconductor
quantum dots (Hackmann and Anders, 2014), in the
hydrodynamical formulation of quantum mechanics
(Cruz-Rodriguez et al., 2016), and in continuous time
quantum walks (Izaac and Wang, 2015). The method
was also extensively reviewed by Kosloff (1994).

1.3.4 “Short-Iterative” Lanczos Method
Quite often, only a rather small number of spectro-
scopic states is effectively involved in the representation
of the time evolution operator during a given time in-
terval "t . This means that, if |((tj )⟩ is the solution of
Eq. (1.42) at time tj , it can be decomposed in a limited
set of states {|ψ̃1⟩, . . . , |ψ̃N(tj )⟩},

|((tj )⟩ =
N(tj )∑

n=1

bn(tj ) |ψ̃n⟩ (1.58)
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with

bn(tj ) = ⟨ψ̃n|((tj )⟩ (1.59)

such that

N(tj )∑

n=1

|bn(tj )|2 ≈ 1 (1.60)

with a hopefully rather small value of N(tj ). Since the
method described here may also apply to potentially
time-dependent Hamiltonians Ĥ (t) and corresponding
pseudoeigenvalues En(t), the notation is here such that
|ψ̃n⟩ are pseudoeigenstates, for which

Ĥ (tj ) |ψ̃n⟩ = En(tj ) |ψ̃n⟩ (1.61)

holds at the given time step tj , and N(tj ) is the num-
ber of pseudoeigenstates contributing importantly to
the dynamics at time tj . This number can vary smoothly
as a function of time.

Following an idea formulated by Park and Light
(1986), we consider here the integration step from a
time tj to a time tj+1 = tj + "t . The Hamiltonian
at time tj is diagonalized within the Lanczos method
(Cullum and Willoughby, 1985), such as to yield a lim-
ited number of pseudoeigenstates |ψ̃n⟩ and correspond-
ing energies En(tj ). The Lanczos iteration is started
from the state |((tj )⟩, which helps ensure that the set of
calculated pseudoeigenfunctions includes all eigenfunc-
tions ψ̃n that contribute significantly to the dynamics at
this particular time step, i.e., for which the overlap inte-
grals bn(tj ) fulfill the condition of Eq. (1.60). With this
method, N(tj ) varies typically between 20 and 30.

The state at time tj+1 is then calculated from a re-
stricted expansion of the type of Eq. (1.48):

|((tj+1)⟩ =
N(tj )∑

n

bn(tj ) exp
(

−i
2π

h
En(tj ) "t

)
|ψ̃n⟩.

(1.62)

The sum in Eq. (1.62) is restricted to the subset of
pseudoeigenstates obtained within the Lanczos algo-
rithm that satisfy Eq. (1.60) within a given accuracy
threshold. With this recipe, the solution of Eq. (1.42)
can then be obtained by iteration. The accrued propa-
gation error depends clearly on the iteration time step
"t used, but it can be largely reduced depending on the
threshold used to verify Eq. (1.60).

The Lanczos method to solve Eq. (1.42) has been
reviewed more recently from an applied mathematical

(Lubich, 2015) and physical prospective (Bader et al.,
2018), and also applied in the context of qubit dynam-
ics (Cangemi et al., 2018).

1.3.5 “Split-Operator” Technique
Another method that makes use of higher order ex-
pansions of the propagator is the split-operator method
(Feit et al., 1982). Let H = H 0 + H 1 be such that the
norms of these Hamiltonians satisfy ||H 1|| ≪ ||H 0||.
The quantity ED defined in Section 1.3.3, is one pos-
sible norm of a matrix. The time evolution operator

U split(t + "t, t) = exp
(
−i

π

h
H 0 "t

)

× exp
(

−i
2π

h
H 1 "t

)
exp

(
−i

π

h
H 0 "t

)
(1.63)

is an approximation to U(t + "t, t) and, compared to
the latter, has quadratic convergence in "t (Bandrauk
and Shen, 1993).

The Hamiltonian used in Eq. (1.63) can often be
considered to be split into the kinetic and potential en-
ergy part H = T + V , with either H 0 = T and H 1 = V ,
or vice versa, depending on which operator satisfies the
aforementioned norm condition better. It is then possi-
ble and even appropriate to evaluate U split in two steps
involving the momentum and space representations of
the time evolving quantum state. Let H 0 = T .

The state at time t is first represented in the mo-
mentum space. When the kinetic energy is evaluated in
Cartesian coordinates, the action of the first factor on
the right-hand side of Eq. (1.63) is to add the angle
−(2π t/h)

∑
k p2

k/2mk to the phase of the state’s wave
function in momentum space.

Then the representation is switched to a space rep-
resentation by a Fourier transformation and the central
factor in Eq. (1.63) adds a phase −(2π t/h)V (x) to the
state’s wave function.

Finally, this function is back-transformed into mo-
mentum space and its phase is incremented by the same
angle as in the first step.

The split operator technique takes advantage of avail-
able routines that perform fast Fourier transformations
(Kosloff and Kosloff, 1983a,b) and has since then been
much used to solve Eq. (1.42) (see, for instance, Kolba
et al., 1992 and, for recent applications and develop-
ments, Sun et al., 2015, Greene and Batista, 2017, Blanes
et al., 2017 for nuclear dynamics and Sabzyan and Jen-
abi, 2016 for electron transfer processes). This method
can be applied also when H 1 is an explicit function of
time, supposing that the variation of H 1 with time t is
itself of order "t3 in the time interval between t and
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t + "t . In this context, “commutator-free” propagators
have been discussed recently, by which the performance
can be significantly improved (Bader et al., 2018).

One interesting aspect of the split operator tech-
nique is to chose a representation basis for the dy-
namics that diagonalizes the kinetic energy. The advan-
tage of the fast Fourier transform is then lost, how-
ever. The numerical effort of such a procedure has been
tested (Quack and Stohner, 1993).

1.3.6 The “Multiconfigurational
Time-Dependent Hartree” Method

Quantum dynamics are in general multidimensional.
The time dependent quantum state |((t)⟩ contains
simultaneously information on all particles involved
in a system, each particle being essentially character-
ized by its position in the three-dimensional space. In
molecules, one considers as particles the nuclei of the
atoms composing these systems and the electrons sur-
rounding them.

Accordingly, the quantum state has to be studied
with respect to its projections on the spaces of the dif-
ferent particles. If the total dimension to be considered
is d, the quantity to be determined is the d-dimensional
wave function ((x1, . . . , xd ; t) = ⟨x1, . . . , xd |ψ(t)⟩.

Similarly to the idea underlying the short iterative
Lanczos method explained above, one exploits the fact
that the number of states that strongly participate at the
dynamics in a given time interval "t is normally small.
In the time-dependent Hartree method (Jungwirth and
Gerber, 1999), the time dependent, d-dimensional wave
function is set up as a product of d one-dimensional,
time dependent single particle functions ϕj (xj , t),

((x1, . . . , xd ; t) = ϕ1(x1, t) · · ·ϕd (xd , t).

The single particle functions can be obtained as so-
lutions of nonlinear coupled partial differential equa-
tions, which can be rigorously derived from the Dirac–
Frenkel variational principle (see Beck et al., 2000, and
references therein).

Alike the configuration interaction expansion in
electronic structure theory, it is possible to improve
the accuracy of the description via a Hartree prod-
uct by considering a “multiconfigurational” expansion
(“MCTDH”, Meyer et al., 1990)

((x1, . . . , xd ; t) =
NMCTDH∑

I=1

bI (t)1I (x1, . . . , xd ; t).

(1.64)

The number I is a superindex that counts set of
indexes i1, . . . , id . It defines a particular configura-
tion of single particle functions 1I (x1, . . . , xd , t) =
ϕ

(1)
i1

(x1, t) · · ·ϕ(d)
id

(xd , t). The quantities bI (t) are time-
dependent coefficients. For the numerical evaluation,
single particle functions are expanded in terms of time-
independent primitive functions ξ

(k)
1 , . . . , ξ

(k)
nk

:

ϕ
(k)
i (xk, t) =

nk∑

j=1

c
(k)
j i (t) ξ

(k)
j (xk). (1.65)

The maximal number of single particle functions of
coordinate xk is nk . The equations of motion for the
expansion coefficients c

(k)
j i (t) and bI (t) can again be

rigorously obtained from the Dirac–Frenkel variational
principle. The number nk of primitive functions can
quite often be chosen sufficiently small for converged
calculations. The number NMCTDH = n1 · · ·nd of con-
figurations participating in the expansion Eq. (1.64) can
hence be made considerably smaller than the number N

of stationary states needed such as in Eq. (1.43).
While the idea underlying the MCTDH method al-

lows us to solve high-dimensional problems that would
otherwise not be solvable, in practice it has a serious
conceptual drawback: the linearity originally embed-
ded in Eq. (1.44) (or Eq. (1.42), or Eq. (1.18)) has to
be given up. The equations of motion are nonlinear,
ordinary differential equations that can be solved by
any integration method, in principle, with variable effi-
ciency and accuracy, which depends strongly on the pre-
cise predictor–corrector algorithm used (see Beck et al.,
2000 and references given therein; a specific algorithm
with step size control was also devised for MCTDH).
Also, as for all initial value problems, the integration
has to be restarted from time t0 for each new initial con-
dition. In contrast to this, the spectral decomposition
scheme described in the previous subsections yields a
universal time evolution operator U(t, t0) which holds
for all initial conditions b(t0).

The great advantage of the MCTDH approach in
high dimensional problems is, however, that it sim-
ply renders these problems treatable, as NMCTDH ≪ N .
A second, more technically oriented advantage of the
method is related to the implicit product form of the
wave function. As a consequence, multidimensional in-
tegrals related to practical evaluation of scalar products
may be carried out as products of one dimensional inte-
grals, if the operators can also be written in the form of
sums of products of one dimensional operators. While
this condition can be met quite generally by specially



16 Molecular Spectroscopy and Quantum Dynamics

devised forms of the potential energy operators, a more
judicious choice of the coordinates used is necessary to
ensure that the kinetic energy operator is of this form.
Such coordinates are, for instance, polyspherical coor-
dinates. The MCTDH method has meanwhile been ap-
plied to a plethora of systems. Both method and appli-
cations were reviewed by Gatti (2014) and Gatti et al.
(2017).

Marquardt et al. (2010) give a detailed comparison
between results obtained with the MCTDH and URIMIR
codes of the time evolution of populations and relative
phases of a state vector defined in a four-dimensional
vibrational subspace in ammonia. The URIMIR code
discussed in Section 1.6 below allows us to also obtain
numerically exact solutions of Eq. (1.42) under the in-
fluence of an external radiation field.

1.3.7 Specific Methods for the Electronic
Motion

Electronic motion can in principle be assessed by all
methods discussed in the previous sections. Several
problems hamper the straightforward implementation
of the equations, however. One problem is connected
with the representation of the Hamiltonian: Basis sets
need to be very large, as the long range Coulomb po-
tential leads to interactions in very much extended re-
gions of space. A second problem arises in the cor-
rect time dependent treatment of the fermionic char-
acter of the electrons. Some approaches are related
to the MCTDH method, described above, where the
total, time-dependent electronic function is described
as a multiconfigurational expansion of completely an-
tisymmetric configuration functions, very much like
in the configuration interaction method of static elec-
tronic structure calculations (Kato and Kono, 2004;
Caillat et al., 2005; Nest, 2006); contrary to the static
case, the orbitals used to compose the time dependent
electronic wave function are time-dependent, however.
These “MCTDHF” called methods allow us also to cal-
culate excited state properties (Nest et al., 2005). How-
ever, they still have a limited domain of applications.

In most cases treated so far, the solutions of Eq.
(1.42) are given for the electronic motion alone in the
so-called “sudden” approximation, in which the nu-
clei are essentially frozen at their positions during the
actual interaction time of a few tens or hundreds of
attoseconds. Additionally, methods used so far are gen-
erally based on the single active electron (SAE) approx-
imation. This approximation is used to simulate pro-
cesses involved in high harmonic generation (Farrell et
al., 2011) and attosecond molecular dynamics (Wörner

and Corkum, 2011), see also Chapter 4 (Baykusheva and
Wörner, 2020) of this book.

Related, highly specific methods have been used for
instance to discuss He2+ + H2collisions (Sisourat et al.,
2011), or the interaction of atoms and molecules with
high intensity radiation, as reviewed by Maquet and
Grobe (2002) and Salières et al. (2012), where the strong
field approximation (SFA) is made. The latter consists
essentially in describing the wave function of the “ac-
tive” electron in terms of analytic Gordon–Volkov solu-
tions for Eq. (1.42), to describe the quantum dynamics
of an electron in the presence of a strong laser field
(Reiss, 1992). Lorin et al. (2007) solved the Maxwell–
Schrödinger equation numerically for H+

2 in a four-
dimensional space; here, the time propagation was eval-
uated via a modified version of Eq. (1.55).

In Chapter 5 of this book (Gokhberg et al., 2020),
methods are described for the theoretical treatment
of several fast electronic processes involving molecu-
lar ionization and charge migration in molecular ag-
gregates. They rely on the calculation of a time depen-
dent hole density using the Heisenberg representation
(Eq. (1.14)) and the short iterative Lanczos technique
explained in Section 1.3.4 above. For the calculation
of the hole density matrix the algebraic diagrammatic
construction scheme was used, a Green’s function for-
malism. For more details on this technique, we refer to
Kuleff et al. (2005), Sansone et al. (2012), Kuleff (2019),
and the references cited therein, as well as to Chapter 5.

Theoretical methods used in attosecond molecular
dynamics were reviewed in the book edited by Vrakking
and Lépine (2019). We also refer to the work by Am-
brosek et al. (2004), Barth and Manz (2007), Bredt-
mann et al. (2015) and Jia et al. (2019) on femtosecond
and attosecond electron and nuclear quantum fluxes
and currents in molecular compounds. The sub-fs elec-
tronic time scale for charge migration in small peptides
was discussed by Remacle and Levine (2006).

1.4 HAMILTONIANS
In nonrelativistic quantum mechanics the molecu-
lar Hamiltonian is indeed set up as the sum of the
Coulomb potential energy terms between the charged
nuclei and the electrons as point masses, as well as
the kinetic energy of these particles expressed in the
usual way in terms of the Cartesian coordinates of these
points and their masses (see Eqs. (1.12) and (1.13)).
Solving for the complete molecular dynamics within
this general scheme is very difficult and limited to small
systems, such as the H+

2 cation, for which the full three-
body problem was solved numerically by Chelkowski
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et al. (1995) and Lorin et al. (2007) (see also the refer-
ences cited therein).

The focus of current theoretical developments is still
based on the Born–Huang expansion of the molecular
state (Born and Huang, 1954),

|((t)⟩ =
∑

k

|((n)
k (t)⟩ ⊗ |ψ(e)

k ⟩. (1.66)

The symbol |((n)(t)⟩ ⊗ |ψ(e)⟩ means a tensor prod-
uct of “nuclear” and “electronic states”.

The “electronic state” |ψ(e)⟩ is supposed to be time
independent, while the “nuclear state” |((n)(t)⟩ con-
tains the information on the time dependence of the
molecular state. Variations of Eq. (1.66) have been sug-
gested (Cederbaum, 2008; Abedi et al., 2010), in which
the electronic state is of the form |((e)

k (t)⟩, i.e., it also
contains an explicit time dependence. While this ansatz
is legitimate and interesting from a fundamental point
of view, so far it yields no practical method for the so-
lution of Eq. (1.42) for the combined nuclear and elec-
tronic motions in molecules. In practice, all electronic
states |ψ(e)

k ⟩ are set to depend parametrically on the nu-
clear coordinates, as will be discussed below, and the
product ansatz does not correspond to a true separation
of the dynamics.

The expansion in Eq. (1.66) is usually interpreted
as corresponding to a representation of the molecu-
lar state in a specific, countable basis of electronic
states |ψ(e)

1 ⟩, |ψ(e)
2 ⟩, . . . Clearly, this interpretation pro-

vides only an approximate description of ionization
processes, where the state of the dissociated electron be-
longs to a continuum of states.

The time-dependent Schrödinger equation, Eq.
(1.42), then reads

i
h

2π

∂

∂t

⎛

⎜⎜⎜⎜⎝

|((n)
1 (t)⟩

|((n)
2 (t)⟩

...

⎞

⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎝

Ĥ
(n)
11 Ĥ

(n)
12 . . .

Ĥ
(n)
21 Ĥ

(n)
22 . . .

...
...

. . .

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

|((n)
1 (t)⟩

|((n)
2 (t)⟩

...

⎞

⎟⎟⎟⎟⎠
. (1.67)

The matrix in Eq. (1.67) is a representation of the to-
tal Hamiltonian in the chosen basis of electronic states
|ψ(e)⟩. Its matrix elements are Hamiltonian operators

Ĥ
(n)
ik that act exclusively on the nuclear degrees of free-

dom:

Ĥ
(n)
ik = ⟨ψ(e)

i ||Ĥ ||ψ(e)
k ⟩ =

⎧
⎨

⎩
T̂ + Vk (i = k),

Ĥ
(non−a)
ik (i ≠ k).

(1.68)

In this equation, the symbol ⟨·||·||·⟩ means a scalar prod-
uct involving the electronic states only; Vk is normally
a function of the relative positions of the nuclei in the
molecular complex and is interpreted as the “potential
energy surface” for the motion of the nuclei in the elec-
tronic state k; T̂ is an adequate representation of the
operator for the kinetic energy in the coordinate space
of the nuclei and does generally not depend on any
specific electronic state. Such representations will be ad-
dressed in the following section. It will be shown that T̂

is essentially a derivative operator, which might depend
on the position of the nuclei, however.

Potential energy surfaces can be obtained from elec-
tronic structure calculations. In these calculations the
electronic wave functions ψ

(e)
k (x(e)) = ⟨x(e)||ψ(e)

k ⟩ are
obtained as eigenstates of the time independent molec-
ular Schrödinger equation in the so-called clamped nu-
clei approximation (see Cederbaum, 2004), i.e., by fixing
the position of the nuclei and neglecting their kinetic
energy. Here x(e) is a generalized electronic position
vector. The functions obtained in this way depend para-
metrically on the positions of the nuclei (see above).
The eigenvalue corresponding to a state |ψ(e)

k ⟩ yields
the multidimensional potential energy (hyper-)surface
Vk(x

(n)), where x(n) is a generalized nuclear position
vector. The states |ψ(e)

k ⟩ obtained in the clamped ap-
proximation are called adiabatic electronic states, as the
electrons are supposed to follow adiabatically the mo-
tion of the nuclei.

Many methods exist today in electronic structure the-
ory with a variety of applications. Some benchmark cal-
culations have been discussed by Schreiber et al. (2008).
The status of methods used in electronic structure calcu-
lations to obtain potential energy surfaces for electroni-
cally excited states has been reviewed by González et al.
(2012) and, in particular in reference to transition metal
complexes by Daniel (2002, 2015a,b) and Penfold et al.
(2018).

The clamped nuclei technique enforces a point-wise
determination of the functions. In molecular dynam-
ics and spectroscopy, the knowledge of potential energy
surfaces is essential and often it is desirable to have an-
alytical representations of these surfaces that are global,
i.e., that are physically well defined in the entire space
of nuclear coordinates. Methods for deriving global ana-
lytical representations of potential energy surfaces from
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electronic structure calculations and from spectroscopic
data are discussed by Marquardt and Quack (2011). It
is worth mentioning that the very first analytical repre-
sentations of molecular potential energy surfaces were
derived from spectroscopic experiments prior to mod-
ern quantum mechanics (Bjerrum, 1914). The use of
permutation symmetry of identical nuclei in the for-
mulation of analytical potential hypersurfaces was dis-
cussed by Marquardt and Quack (1998) and Qu et al.
(2018) (see also Fábri et al., 2017).

The operators Ĥ
(non−a)
ik occurring in Eq. (1.68) rep-

resent the nonadiabatic couplings between the adiabatic
electronic states. They account for the coupling between
the adiabatic states and therefore play an important role
in the description of ultrafast processes that may occur
mainly in electronically excited molecules (González et
al., 2012; Daniel, 2002, 2015a; Vrakking and Lépine,
2019), see also Chapter 6 of this book (Vaníček and Be-
gušić, 2020).

Eq. (1.67) is in principle an exact representation of
Eq. (1.42), whenever the expansion in Eq. (1.66) can be
considered exact. It cannot be considered exact, as ex-
plained above, in processes involving the ionization of
molecules. To solve this equation in a general case is dif-
ficult, however, and one has normally to resort to several
approximations, as discussed in Section 1.3.7 above.

In the Born–Oppenheimer approximation, the action of
the nonadiabatic couplings is neglected with respect to
that of the diagonal operators. This approximation is
adequate, even excellent in many cases, as long as the
energies of two electronic states are not too close one
to the other, i.e., as long as |Vk(x

(n)) − Vi(x
(n))| ≫ 0.

These terms can hardly be neglected, when the poten-
tial energy surfaces of two electronic states cross, such as
at conical intersections (Domcke et al., 2004; Domcke
and Yarkony, 2012). These are the regions of the nuclear
configuration space where the multidimensional po-
tential energy surfaces of two or more electronic states
intersect, even if they belong to the same irreducible
representation space of the molecular symmetry group
(Teller, 1937; Herzberg and Longuet-Higgins, 1963).
The mathematical foundations of conical intersections
are clearly explained by Longuet-Higgins (1975).

The exact evaluation of the nonadiabatic couplings is
difficult for several reasons (Cederbaum, 2004): as for
potential energy surfaces, these terms need to be eval-
uated in pointwise electronic structure calculations in
the space of nuclear configurations, there are generally
no global analytical representations of these operators;
furthermore, they may become singular, in particular at
conical intersections.

Singularities may theoretically be removed by per-
forming an appropriate unitary basis transformation
(Cederbaum, 2004):

|(̃(n)
k (t)⟩ =

∑

l

Y ∗
lk |((n)

l (t)⟩, (1.69)

|ψ̃(e)
k ⟩ =

∑

l

Ykl |ψ(e)
l ⟩, (1.70)

where
∑

k Y ∗
lk Ykl′ = δll′ . The unitarity of the matrix Y

ensures the invariance of the Born–Huang expansion
in Eq. (1.66). Because the basis of electronic states de-
pends parametrically on the relative nuclear position
vectors x(n), it is expected that the matrix Y will also
depend on x(n).

It can be shown that, under appropriate conditions,
the singularities expected to occur in the derivative cou-
pling terms Ĥ

(non−a)
ik in the adiabatic basis represen-

tations can be made to vanish and be replaced by
multiplicative, generally nonsingular coupling opera-
tors (Cederbaum, 2004). The states |ψ̃(e)

k ⟩ introduced
by this procedure are called diabatic; in practice this
technique leads only to an approximate treatment of
the coupling, since the transformation runs over a finite
number of countable states. A quite valuable technique
to obtain nonadiabatic couplings uses a block diago-
nalization of the electronic Hamiltonian (Pacher et al.,
1988). These operators may then be represented by an
analytical Taylor expansion limited to the vicinity of the
conical intersection, at which they were derived. This
method leads to the vibronic coupling Hamiltonian, which
may be used for the study of the ultrafast dynamics
in this limited region of configuration space (González
et al., 2012; Daniel, 2015a), also in competition with
the spin–orbit coupling prominent in transition metal
complexes (Penfold et al., 2018).

Many theoretically fundamental or methodological
articles on nonadiabatic couplings and conical inter-
sections, as well as the dynamics resulting from them
and examples of applications, can be found in the book
by Domcke et al. (2004) or in the reviews by Chu et
al. (2006), Matsika and Krause (2011) or Domcke and
Yarkony (2012).

Vibrational wave packet dynamics associated with
ultrafast electron transfer reactions in a condensed
phase environment has been studied by Thoss et al.
(2004). A special issue of the Journal of Chemical Physics
has been devoted to nonadiabatic molecular dynamics
(see the keynote article by Tully (2012)).

For systems involving more than 5 atoms, typically,
finding accurate solutions of Eq. (1.67) outside the vi-
bronic coupling Hamiltonian approach becomes truly
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difficult, and classical or semiclassical approaches for
the motion of the nuclei are considered instead, as
discussed in Chapter 6 of this book (Vaníček and Be-
gušić, 2020). In order to describe the transfer of pop-
ulation from one adiabatic state to the other, many of
these approaches use a surface hopping idea, such as that
proposed by Tully (1990), or variations thereof (Tully,
2012, and the references given therein). However, one
must not consider these classical or semiclassical treat-
ments as actual approximations of the quantum dy-
namics. Rather, they yield a classical picture of a process
that can be quite misleading, indeed, due to the wave
mechanical nature of the actual dynamics that they can-
not fully recover.

One way to simplify the great complexity of the
Hamiltonian for multidimensional molecular motion
is a quasiadiabatic separation of vibrational degrees of
freedom. For instance, one may treat the Hamiltonian
quite explicitly in one coordinate (the “reaction path”)
or perhaps a small subset of coordinates, whereas all
other coordinates are treated implicitly by their effect
on this selected subset. This is the idea of the “Reac-
tion Path Hamiltonian” (RPH, Miller et al., 1980) and
the extension to the quasiadiabatic channel RPH ap-
proach (Quack and Suhm, 1991; Fehrensen et al., 1999,
2007). These approaches are discussed in more detail in
Chapter 7 of this book (Quack and Seyfang, 2020).

1.5 COORDINATES
Cartesian coordinates defined in a space fixed refer-
ence frame give the simplest spatial representation of
the quantum mechanical kinetic energy operator. As in
classical mechanics, the Cartesian coordinates of all par-
ticles can be used to describe the internal molecular
dynamics. However, in addition to the latter, they do
also describe the center of mass motion and the over-
all rotation of the molecular system, which are constant
quantities in the absence of external forces or torques.
In order to separate external from internal motions, two
types of coordinate transformations can be performed.
In the first, linear type of transformation, the center of
mass is separated by the definition of space fixed rela-
tive position vectors of the atoms. The second, nonlin-
ear transformation defines a reference frame that rotates
with the molecule.

Despite linearity, the kinetic energy operator be-
comes more complicated and nonseparable when ex-
pressed in the space fixed relative position vectors which
are obtained, when the center of mass is separated.
There is a class of orthogonal relative position vectors,
the definition of which depends on the masses of the

particles, and in which the kinetic energy operator be-
comes maximally separable. These are three dimen-
sional vectors represented by the symbol r⃗n. The issue
is discussed very pedagogically by Mladenović (2000).
For N particles, there are N − 1 orthogonal relative po-
sition vectors r⃗n. Examples of such vectors are Jacobi
and Radau vectors. When each of the three-dimensional
position vectors is described in terms of its polar coordi-
nates rn, ϑn and ϕn, one obtains a representation of the
molecular system in polyspherical coordinates (Nauts
and Chapuisat, 1987; Gatti et al., 1998). For a system of
N particles, the kinetic energy operator then gains the
following general, very compact form,

(SF)T̂ =
N−1∑

n=1

{
− h2

8π2 µn

(
∂2

∂rn
2 + 2

rn

∂

∂rn

)

+ h2

8π2 µn r2
n

(SF)4̂n

}
, (1.71)

where

(SF)4̂ = −
(

1
sin(ϑn)

∂

∂ϑn
sin(ϑn)

∂

∂ϑn
+ 1

sin2(ϑn)

∂2

∂ϕn
2

)

.

(1.72)

The quantities µn (n = 1, . . . ,N − 1) are appropri-
ately defined reduced masses (Mladenović, 2000; Gatti
et al., 1998; Gatti and Iung, 2009). In principle, N can
be the total number of particles in the molecule, i.e.,
electrons and nuclei. In practice, electronic motion has
usually been separated adiabatically from the nuclear
motion, as discussed in the previous section, before the
actual nuclear dynamics is treated, and only the nu-
clei are considered for the definition of orthogonal rel-
ative position vectors; N = Na is then the number of
atoms. Note that, in this case, an error is introduced, as
the electrons are generally not considered in the defini-
tion of the center of mass. This error, which is typically
smaller than the error usually made by applying the
Born–Oppenheimer approximation with well separated
electronic states, was discussed by Kutzelnigg (2007).

The kinetic operator in Eq. (1.71) has singularities at
rn = 0 and ϑn = 0 or π . The singularity at rn = 0 can eas-
ily be removed. Those in terms of ϑn can be removed in
the evaluation of matrix elements using nonseparable
bases such as spherical harmonics in ϑn and ϕn, or using
special discrete variable representations (DVR) (Light and
Carrington, 2000; Beck et al., 2000) derived from these
functions. Using nonseparable basis functions may ren-
der calculations longer.

In order to transform the space fixed coordinates
into molecule fixed coordinates that rotate with the
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molecule, a direction-cosine matrix is used in connec-
tion with the three Euler angles α, β and γ (Zare, 1988).
In order to define these angles, the body fixed axes sys-
tem (BF)z, (BF)y and (BF)x has to be defined. Formerly
(see, e.g., Wilson et al., 1955), the system of princi-
pal axes of the instantaneous inertia tensor was usually
chosen. In more recent work, an embedding idea follow-
ing Tennyson and Sutcliffe (1982) has been adopted,
which consists of using two of the orthogonal relative
position vectors to define the body fixed reference axis
system (see also Tennyson, 2011). The highest indexed
vector r⃗Na−1 may be chosen to define the body fixed
z-axis. Hence, we identify the Euler angles α = ϕNa−1
and β = ϑNa−1. Then, r⃗Na−2 is chosen to define the
body fixed xz-plane. The rotation angle γ about the
body fixed axis (bf)z as well as all remaining angles can
be determined analytically (Mladenović, 2000) from
the space fixed angles. The corresponding transforma-
tion equations, which are nonlinear and transcendental,
however, lead to a transformation among angles alone:

ϑNa−1,ϕNa−1, . . . ,ϑ1,ϕ1︸ ︷︷ ︸
2×(Na−1) angles

−→ α,β,γ , θNa−2, θNa−3,φNa−3, . . . , θ1,φ1︸ ︷︷ ︸
2×(Na−1) angles

.

In the body fixed system, since r⃗Na−2 lies in the body
fixed xz-plane, the azimuthal angle φNa−2 is fixed (usu-
ally to π), and does not appear as a dynamical variable.
Note also that this transformation does not alter the
lengths of the orthogonal relative position vectors.

The set of (3 × Na − 6) internal coordinates com-
posed of (Na − 1) radii and (2 × (Na − 1) − 3) angles,

rNa−1, . . . , r1, θNa−2, θNa−3,φNa−3, . . . , θ1,φ1,

defines a set of polyspherical coordinates.
Polyspherical coordinates are a good choice for mul-

tidimensional dynamics, as the expression of the kinetic
operator can be rendered quite simple. Additionally, the
differential volume element, which is given as the Ja-
cobian determinant of the nonlinear transformation,
will always be separable. This has two important as-
pects: First, multidimensional integrals can always be
evaluated as products of one-dimensional integrals; sec-
ondly, reduced dimensionality treatments can easily be
defined, as the integration domains have no mutual de-
pendencies. We may mention here also the use of “po-
lar normal coordinates” in treating anharmonic Fermi
resonances (Lewerenz and Quack, 1988; Luckhaus and
Quack, 1992) who used this efficiently in contraction

schemes in conjunction with DVR techniques (Bačić et
al., 1988).

Such coordinates were used to describe a multidi-
mensional tunneling motion in the femtosecond time
domain in vibrationally highly excited ammonia (Mar-
quardt et al., 2010) and methane vibrational states
(Zhao et al., 2018), in the proton transfer dynamics in
malonaldehyde (Joubert-Doriol et al., 2012), and even
in the complex ring-opening dynamics of indolinoben-
zospiropyran (Joubert-Doriol et al., 2014).

Because of the nonlinear transformation between
the space fixed and the body fixed reference system,
the body-fixed form of the kinetic energy operator will
in general be more complicated than the expression in
Eq. (1.71). However, it is possible to show that it can al-
ways be written in terms of a sum of products of one di-
mensional operators (see the review by Gatti and Iung,
2009), which facilitates its use in particular in connec-
tion with the MCTDH method for solving Eq. (1.42).

Polyspherical coordinates will generate technical
problems when chemical reaction are to be described,
during which the set of orthogonal relative position
vectors enabling the separation of reactant spaces in
the entrance channel is not the same as that enabling
the separation of product spaces in the exit channel.
In order to evaluate expectation values such as scat-
tering matrix elements, for instance, complicated co-
ordinate transformations need to be applied, in such
cases. Elegant solutions to this problem have been pro-
posed by Xiao et al. (2011). An alternative would be to
use hyperspherical coordinates (Nauts and Chapuisat,
1987; Kuppermann, 1996; Aquilanti and Cavalli, 1997;
Aquilanti et al., 1999). The latter would allow us to ob-
tain a more balanced treatment of entrance and exit
channels in a collision, and the calculation of inte-
grals become more easy. One disadvantage of using
hyperspherical coordinates is the increased number of
angular variables. As can be followed from inspection
of Eq. (1.72), angular variables are accompanied by sin-
gularities in the kinetic energy operator, the number of
which will hence increase. The necessity to use a larger
number of nonseparable bases to avoid these singulari-
ties is a drawback.

1.6 QUANTUM DYNAMICS UNDER
EXCITATION WITH COHERENT
MONOCHROMATIC RADIATION

1.6.1 Introductory Remarks
The excitation with coherent monochromatic (or nearly
monochromatic) radiation is an important special case
of molecular spectroscopy and quantum dynamics to
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be discussed in more detail in this section. While, in
principle, any of the direct integration schemes for the
time dependent Schrödinger equation discussed in Sec-
tion 1.3 might be used, we concentrate here on the
approach where the electromagnetic field is treated clas-
sically and the stationary states of the field free molecule
are obtained in a first step by solving the time indepen-
dent Schrödinger equation for the isolated molecule,
as described in Chapter 2 of this book (Császár et al.,
2020).

In a second step one then solves the time dependent
Schrödinger equation in the basis of these molecular
eigenstates. The advantages of this two-step approach
have been pointed out for the case of coherent infrared
excitation by Quack (1978, 1989b), and in Fábri et al.
(2019) (see also Section 1.3.1). One important advan-
tage of this approach is the possibility to check the
theoretical results of the first step against very accurate
experimental results from high resolution spectroscopy
(Merkt and Quack, 2011a). The division of the approach
in two steps has been called a divide-and-rule (divide et
impera, DEI)-Ansatz by Fábri et al. (2019).

We follow here closely the treatment given in Quack
(1998) and Merkt and Quack (2011a), in part even liter-
ally. One should note, however, that some of the advan-
tages of this DEI approach are lost when one considers
very short excitation times, very strong fields and very
high radiation frequencies (VUV, Röntgen, etc.) where
some of the approximations in the starting point of the
approach are lost.

1.6.2 General Aspects of Atomic and
Molecular Systems in Electromagnetic
Field

High-power coherent laser light sources allow for a vari-
ety of phenomena ranging from coherent single-photon
transitions to multiphoton transitions of different types.
Fig. 1.4 provides a summary of mechanisms for such
transitions.

While excitation with incoherent light can be based
on a statistical treatment (Einstein, 1916a,b, 1917;
Merkt and Quack, 2011b), excitation with coherent light
can be handled by means of quantum dynamics. In-
tense, coherent laser radiation as also electromagnetic
radiation in the radiofrequency domain used in nuclear
magnetic resonance (NMR) spectroscopy (Ernst et al.,
1987) can be treated as a classical electromagnetic wave
satisfying the general wave equations (1.73) and (1.74)
resulting from Maxwell’s theory:

∇2E⃗ = µµ0εε0
∂2E⃗

∂t2 , (1.73)

FIG. 1.4 Mechanisms for radiative excitation [after Quack,
1998]. Dotted lines give the transitions, curved full lines the
dipole coupling.

∇2B⃗ = µµ0εε0
∂2B⃗

∂t2 , (1.74)

where E⃗ is the electric field vector and B⃗ the vector
of the magnetic induction, µ, µ0, ε, ε0 are the usual
field constants, see (Cohen et al., 2007), with ε = µ = 1
in vacuo. In Eqs. (1.73) and (1.74), ∇2 = ∇⃗2, and the
nabla operator ∇⃗ is defined in Eq. (1.75):

∇⃗ = e⃗x
∂

∂x
+ e⃗y

∂

∂y
+ e⃗z

∂

∂z
(1.75)

where e⃗x , e⃗y , e⃗z are the unit vectors in a (right-handed)
Cartesian coordinate system. The classical electromag-
netic wave can be understood as the coherent state de-
scription of the quantum field in the limit of very large
average number ⟨n⟩ of quanta per field mode (Glauber,
1963a,b; Perelomov, 1986). Coherent laser radiation
and also radiofrequency radiation are frequently charac-
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FIG. 1.5 Schematic representation of a z-polarized monochromatic wave (after Merkt and Quack, 2011b).

terized by ⟨n⟩ > 1010. Thus the classical approximation
to the electromagnetic field is excellent. The situation
of weak thermal light sources in the optical domain is
very different (⟨n⟩ < 1), requiring a quantum statistical
treatment.

We consider here, for simplicity, the special case of a
classical z-polarized electromagnetic wave propagating
in vacuo in the y-direction with slowly varying (or con-
stant) field amplitudes E0(t) and B0(t) (see Fig. 1.5):

Ez(y, t) = |E0(t)| cos(ωt + η′ − kωy), (1.76)

Bx(y, t) = |B0(t)| cos(ωt + η′ − kωy), (1.77)

ω = 2πν is the angular frequency, kω = 2π/λ the angular
wavenumber, ν = c/λ the ordinary frequency, and λ the
wavelength. At a given position y, the phase η′ can be
combined with the phase −kωy to an overall phase (η =
kωy − η′).

The extension to more general cases is straightfor-
ward (see also Quack, 1998). The intensity of the ra-
diation is, in general,

I (y, t) = |Ez(y, t)|2
√

εε0
µµ0

, (1.78)

and averaging over time with
〈
cos2x

〉
= 1/2, one has

from Eqs. (1.76) and (1.78)

I (t) = 1
2

|E0(t)|2
√

εε0
µµ0

. (1.79)

For the speed of light, one has in some medium with
refractive index nm

cm = (µµ0εε0)−1/2 = c/nm (1.80)

and in vacuo (µ = ε = 1)

c = (µ0ε0)−1/2. (1.81)

We can mention here some practical equations for cal-
culating electric and magnetic field strengths when irra-
diating with monochromatic radiation of given inten-
sity I :

∣∣∣∣
E0

V cm−1

∣∣∣∣ ≃27.44924

√
I

W cm−2 , (1.82)

∣∣∣∣
B0
T

∣∣∣∣ ≃9.156 · 10−6
√

I

W cm−2 . (1.83)

A further quantity characterizing the irradiation over
some period of time t is the fluence F(t) defined by
Eq. (1.84) as

F(t) =
∫ t

0
I (t ′)dt ′. (1.84)

For wavelengths λ > 100 nm, one can assume E⃗ and
B⃗ to vary little over the extension of the atomic or
molecular system ("y < 1 nm) at any given time, which
leads to the dipole approximation for the interaction
energy between molecule and field,

V̂el.dipole = − ˆ⃗µel · E⃗, (1.85)

where ˆ⃗µel is the electric dipole operator vector given by
Eq. (1.86), with charges qi for the particles with posi-
tion operator vector ˆ⃗ri ,

ˆ⃗µel =
∑

i

qi
ˆ⃗ri . (1.86)

Similarly, one has the interaction energy with a mag-
netic dipole operator vector ˆ⃗µmagn,

V̂magn.dipole = − ˆ⃗µmagn · B⃗. (1.87)

For the present quantum dynamical treatment of coher-
ent excitation, we restrict our attention to electric dipole
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transitions in a field given by Eq. (1.76), and therefore
we can write, with the z-component µ̂z of the electric
dipole operator vector (and abbreviating η = kωy − η′),
as follows:

V̂el.dipole = −µ̂zEz(y, t) = −µ̂z |E0(t)| cos(ωt − η).

(1.88)

The extension to magnetic dipole transitions is straight-
forward. We give here only a brief summary and refer to
Quack (1978, 1982, 1998) for more details.

1.6.3 Time-Dependent Quantum Dynamics
in an Oscillatory Electromagnetic Field

Consider now the time-dependent Schrödinger equa-
tion (1.18) (or Eq. (1.42)) with a time-dependent
Hamiltonian

Ĥ (t) = ĤMol − µ̂z |E0(t)| cos(ωt − η), (1.89)

with ĤMol being the time-independent Hamiltonian
for the isolated molecule in the absence of fields and
the interaction Hamiltonian being a time-dependent,
oscillatory function. We assume the solution of the
time-independent Schrödinger equation for the isolated
molecule to be given by Eq. (1.90) with " = h/2π ,

ĤMolϕk = Ekϕk = "ωkϕk, (1.90)

and write the solution of the time-dependent Schrödin-
ger equation in the basis ϕk of molecular eigenstates
with time-dependent coefficients as

((r, t) =
∑

k

bk(t)ϕk(r). (1.91)

Here r stands again for a set of molecular coordinates,
as in Eq. (1.21). Inserting this into Eq. (1.18), we obtain
a set of coupled differential equations:

i"
dbj

d t
=

∑

k

Hjkbk(t), (1.92)

or in matrix notation,

i"
db(t)

d t
= H (t)b(t). (1.93)

This is again, in essence, a matrix representation of
the original Schrödinger equation (see Section 1.3 and
Eq. (1.44)). Assuming molecular states of well-defined

parity, the diagonal electric dipole matrix elements van-
ish and we have the diagonal elements of H (t),

Hii = Ei =
〈
ϕi

∣∣∣ĤMol

∣∣∣ϕi

〉
≡"ωi . (1.94)

For other situations such as for chiral molecules or if
parity violation were important (see Quack, 2011a), one
would have also a diagonal contribution from the elec-
tric dipole interaction energy. Disregarding such cases
here, the electric dipole interaction energy leads to time-
dependent off-diagonal matrix elements

Hkj (t) =
〈
ϕk

∣∣∣V̂el.dipole(t)
∣∣∣ϕj

〉
. (1.95)

Dividing Hkj by "cos(ωt − η), we obtain a matrix el-
ement Vkj , which is independent of time, if we can
assume |E0(t)| to be sufficiently slowly varying in time
that it can be taken to be constant for the time period
under consideration, as we shall do, replacing E0(t) by
E0 leads to

Vkj = Hkj[
"cos(ωt − η)

] = −
〈
ϕk

∣∣µ̂z
∣∣ϕj

〉 |E0|
"

= V ∗
jk.

(1.96)

We then obtain a set of coupled differential equations
in matrix notation:

i
d
d t

b(t) = {W + V cos(ωt − η)} b(t) (1.97)

where we have defined the diagonal matrix W by the
matrix elements Wkk ≡ωk .

This is still a practically exact representation of the
original time-dependent Schrödinger equation for the
physical situation considered here. Because of the essen-
tial time dependence in V cos(ωt −η), in general there is
no simple closed expression in the form of the exponen-
tial function analogous to Eqs. (1.16), (1.22) or (1.47)
and (1.50), with a few exceptions, such as the harmon-
ically driven harmonic oscillator (see Marquardt and
Quack, 1989, and the references cited therein, as dis-
cussed at the end of this section). Apart from numeri-
cal, stepwise solutions discussed by Quack (1998), one
can make use of series expansions such as the Magnus
expansion. This solves Eq. (1.93) by means of the fol-
lowing series for U(t, t0), with the unit matrix I :

b(t) = U(t, t0) b(t0), (1.98)

U(t0, t0) = I , (1.99)

U(t, t0) = exp

⎛

⎝
∞∑

n=0

Cn

⎞

⎠ . (1.100)



24 Molecular Spectroscopy and Quantum Dynamics

The first two terms are given by the following expres-
sions:

i"C0 =
∫ t

t0

H (t ′)dt ′, (1.101)

i"C1 = −1
2

∫ t

t0

{∫ t ′′

t0

[
H (t ′),H (t ′′)

]
dt ′

}

dt ′′. (1.102)

Higher terms contain more complex combinations of
commutators of the type

[
H (t ′),H (t ′′)

]
. From this, one

recognizes that the series terminates after the first term
given by Eq. (1.78), if H (t ′) and H (t ′′) commute at all
t ′, t ′′, which is true if H does not depend on time, re-
sulting in the exponential solutions already discussed.
There are other (rare) cases of time-dependent H (t), but
with

[
H (t ′),H (t ′′)

]
= 0. One can, however, also make

use of the periodicity of the field using Floquet’s theo-
rem (Quack, 1978, 1998).

1.6.4 Floquet Solution for Hamiltonians With
Strict Periodicity

With H = " {W + V cos(ωt − η)} from Eq. (1.74), one
has obviously

H (t + τ ) = H (t) (1.103)

with period τ = 2π/ω.
Making use of the Floquet theorem (or Floquet–

Liapunoff theorem, see Quack, 1978, 1998 and Quack
and Sutcliffe, 1985 for the historical references), one has
the following form for the time-evolution matrix (with
some integer n):

U(t, t0) = F (t, t0) exp (A(t − t0)) , (1.104)

F (t0, t0) = I , (1.105)

F (t + nτ ) = F (t), (1.106)

A(t ′) = A(t ′′) (all t ′, t ′′). (1.107)

It is then sufficient to integrate Eq. (1.93) numeri-
cally over one period τ using methods discussed in Sec-
tion 1.3, and then obtain the evolution for all times by
matrix multiplications according to Eqs. (1.104)–(1.107).
In particular, at multiples of the period τ , one finds
(with t0 = 0):

U(τ ) = exp(Aτ ), (1.108)

U(nτ ) = [U(τ )]n . (1.109)

There has been considerable literature making use of
Floquet’s theorem for the treatment of coherent exci-
tation and there also exist computer program packages

(Quack and Sutcliffe, 1986; Quack, 1998; Marquardt et
al., 2019). We shall discuss here a further useful approx-
imation.

1.6.5 Weak-Field Quasiresonant
Approximation (WF-QRA) for Coherent
Monochromatic Excitation

We consider a level scheme for coherent excitation with
levels near the resonance as shown in Fig. 1.6. One can
then associate with each molecular level of energy Ek =
"ωk an integer photon number nk for near-resonant ex-
citation such that

ωk = nkω + xk (1.110)

where xk is a frequency mismatch for exact resonance at
the best choice of nk .

Under the conditions that (i) there is a sequential
near-resonant excitation path, (ii) only levels with a
general resonance mismatch satisfying |xk | ≪ ω con-
tribute effectively to excitation (quasiresonant condi-
tion), and (iii) the coupling matrix elements satisfy
|Vkj | ≪ ω (weak-field condition), one can approxi-
mately derive a set of coupled equations with an effec-
tive Hamiltonian that does not depend on time. For this
purpose, one makes the simple substitution (Quack,
1978, 1998), namely

ak = exp(inkωt)bk, (1.111)

resulting in the set of differential equations

i
dak

dt
= xkak + 1

2

∑

j≠k

Vkj aj , (1.112)

or in matrix form (with the diagonal matrix X and
Xkk = xk)

i
da

d t
=

{
X + 1

2
V ′

}
a. (1.113)

where V ′ differs from V by explicitly setting all Vkj

equal to zero if the levels Ek and Ej are far off reso-
nance, e.g. if they are not adjacent quasiresonant levels.

One can interpret this equation by means of an “ef-
fective Hamiltonian”

H
(a)
eff = "

{
X + 1

2
V ′

}
(1.114)

and the corresponding effective time-evolution matrix
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FIG. 1.6 Energy-level scheme [after Quack, 1982]. The
molecular energy levels are marked as horizontal full lines.
The horizontal dashed lines correspond to the energies
E0 + nk"ω of the ground state (E0) plus the energy of nk

photons.

U
(a)
eff (t, t0) = exp

⎡

⎣−2π i
H

(a)
eff (t − t0)

h

⎤

⎦

= exp
[
−i

(
X + 1

2
V ′

)
(t − t0)

]
, (1.115)

a(t) = U
(a)
eff (t, t0)a (t0). (1.116)

It is sometimes useful to describe decay phenom-
ena by adding an imaginary energy contribution, for
instance, El = ℜ(El) − iγl/2 as indicated, where ℜ(z)

designates the real part of the complex number z (see
Quack, 1982 and Quack and Sutcliffe, 1984). The intro-
duction of an imaginary part to the energy of a spectro-
scopic state introduces into the field of non-Hermitian
quantum mechanics.

Non-Hermitian quantum mechanics is covered in
great detail in the book of Moiseyev (2011)
(see also Hehenberger et al., 1974). In principle ex-

FIG. 1.7 Effective-frequency scheme corresponding to the
energy-level scheme of Fig. 1.6 [after Quack, 1982].

ponential decay can be derived also with the aid of
Hermitean quantum mechanics, as exemplified by the
Bixon-Jortner model (Bixon and Jortner, 1968). Related
to exponential decay are quasi-Lorentzian lineshapes
with a lower energy bound which were shown to arise
from Hermitean quantum mechanics in an analytical
exact solution of the time dependent Schrödinger equa-
tion (Marquardt, 2019). Various aspects of exponential
decay and the related spectroscopic lineshapes were dis-
cussed by Merkt and Quack (2011b), were one can also
find a critical discussion of the incorrect but frequently
used “textbook” derivation of exponential decay line-
shapes from the uncertainty relation Eq. (1.11), which
often is presented as “didactically useful” but in fact is
quite fallacious.

The result in Eqs. (1.113)–(1.116) is quite remark-
able as it corresponds to replacing the molecular ener-
gies Ek by new effective energies "Xkk and the couplings
Vkj by new effective couplings (Vkj /2) for near-resonant
levels (and implicitly by zero for far off-resonant lev-
els). We can therefore use the time independent V ′/2
rather than V cos(ωt − η) for the general coupling ma-
trix in Eq. (1.97). This is graphically shown in Fig. 1.7
for the same level scheme as in Fig. 1.6, but with ef-
fective energies that are “on the same energy shell” and
thus effective couplings between levels of similar effec-
tive energy. We note the close analogy to the dressed
atom (dressed molecule) picture by Cohen-Tannoudji
et al. (1992) and Haroche (2012), which uses, however,
a different derivation. We note that the quasiresonant
transformation as given in Quack (1978, 1998) can be
written in matrix notation:

a = S b, (1.117)

with the diagonal matrix

Skk = exp(inkωt). (1.118)
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FIG. 1.8 Two-level scheme for coherent radiative
excitation with frequency ω [after Merkt and Quack, 2011b].

Similarly, a transformation for the density matrix
P (a) from P (b) can be derived in this approximation,
resulting in the solution of the Liouville–von Neumann
equation for P (t) by

P (a)(t) = S P (b) S† , (1.119)

P (a)(t) = U
(a)
eff (t, t0)P (a)(t0)U

(a)†
eff (t, t0). (1.120)

For details, we refer to Quack (1978, 1982, 1998) and
the discussions in Donley et al. (2001), Marquardt et
al. (2019), Quack and Sutcliffe (1984, 1985) as well as
in Whaley and Light (1984). We turn now to a simple
application to the special case of coherent radiative ex-
citation connecting just two quantum states.

1.6.6 Coherent Monochromatic Excitation
Between Two Quantum States

If only two quantum states are considered, one obtains
a scheme for the coherent monochromatic radiative ex-
citation as shown in Fig. 1.8.

Eq. (1.93) simplifies to the set of just two coupled
differential equations:

i
db1
d t

= ω1b1 + V12 cos (ωt − η) b2, (1.121)

i
db2
d t

= V21 cos(ωt − η)b1 + ω2b2. (1.122)

One might think that this rather simple set of cou-
pled differential equations has a simple solution, but,
in fact, it seems that until today no simple general an-
alytical solution in the form of a closed expression is
known (see the discussion in Quack (1978, 1998), also
for special cases). Of course, one can write down se-
ries expansions (Sections 1.3.2 and 1.3.3) or quite easily
solve the equations numerically, by other methods dis-
cussed in Section 1.3.

However, following the discussion of Section 1.6.5,
an analytical solution in the form of a closed expression
can be derived in the weak-field quasiresonant approxi-
mation (WF-QRA). The most general solution in terms
of the time-evolution matrix U

(a)
eff is given by the matrix

elements, omitting the index “eff” to simplify the nota-
tion, and taking a real V12 = V ∗

21 = V as parameter,

U
(a)
11 = exp(−iλ1t)

[
x2 + y2exp(iωRt)

]
, (1.123)

U
(a)
22 = exp(−iλ1t)

[
y2 + x2exp(iωRt)

]
, (1.124)

U
(a)
12 = U

(a)
21 = exp(−iλ1t)xy

[
1 − exp(iωRt)

]
, (1.125)

where we have used the following parameters as abbre-
viations:

D = ω2 − ω1 − ω, (1.126)

ωR = (λ1 − λ2) =
√

V 2 + D2 = 2π

τR
, (1.127)

λ1 = 1
2

(
D +

√
V 2 + D2

)
, (1.128)

λ2 = 1
2

(
D −

√
V 2 + D2

)
, (1.129)

x =
[

1
2

− D

2ωR

]1/2
, (1.130)

y =
[

1
2

+ D

2ωR

]1/2
. (1.131)

We note that in Quack (1998) some of the expres-
sions where misprinted, and these are corrected here
(see also Merkt and Quack, 2011b). We also give the ex-
plicit form of the effective Hamiltonian corresponding
to Eq. (1.114):

H
(a)
eff
"

=
(

0 0
0 D

)
+ 1

2

(
0 V

V 0

)
(1.132)

= X + 1
2
V . (1.133)

In the two-level case, the distinction between V and V ′
is not necessary.

Now U
(a)
eff is explicitly derived by means of the eigen-

values and eigenstates of H
(a)
eff (see Section 1.3.1 and

Quack, 1998) as

Z−1
(

X + 1
2
V

)
Z = # = Diag(λ1,λ2), (1.134)

U
(a)
eff (t − t0) = Z exp

[
−i#(t − t0)

]
Z−1. (1.135)

In Eq. (1.134) # is a diagonal matrix with eigenvalues
λ1 and λ2.
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FIG. 1.9 Time-dependent level populations from
Eq. (1.136). The population p2 of the upper level in the
scheme of Fig. 1.8 is shown with different resonant defects
D = (0,1,2,3,4,5) × 1012 s−1 for an electric dipole transition
with the laser wave number ν̃ = 1000 cm−1, intensity
I = 1 GW cm−2 and transition moment |µ21| = ⟨ϕ2|µ̂z|ϕ1⟩ =
1 Debye [after Merkt and Quack, 2011b].

While these general equations can be used to derive
numerous properties of the coherent monochromatic
excitation in the two-level problem, we conclude here
with the result for the time-dependent population of
the excited level p2(t), if, initially, at time zero, only the
ground state is populated (p1(t = 0) = 1).

One obtains Eq. (1.136) for the population of the
upper level:

p2(t) = |b2(t)|2 = V 2

V 2 + D2

[
sin

(
t

2

√
V 2 + D2

)]2

= 1 − p1(t). (1.136)

This is a periodic exchange of population between
ground and excited states with a period

τR = 2π
√

V 2 + D2
. (1.137)

This period is called the Rabi period, with ωR being the
Rabi frequency, as these equations were derived on the
basis of the so-called rotating wave approximation by
Rabi (1937) (see also Rabi et al., 1938) in the context
of early NMR experiments (in beams, with a magnetic
dipole transition matrix element V , of course).

The rotating wave approximation becomes identical
with the quasiresonant approximation for the special
case of a two-level problem. Eq. (1.136) is frequently
called the Rabi formula.

Fig. 1.9 shows the time-dependent level populations
for a fairly typical case. With increasing resonant defect
D, the amplitude of the oscillation decreases, but the
frequency of oscillation increases. The initial time evo-
lution is independent of the resonant defect as is readily

seen from the series expansion of the sin(x) function
for small arguments x (sin(x) = x + · · · ) giving at suffi-
ciently small times

p2(t) ≃V 2t2/4 (small t). (1.138)

One can also consider the time-averaged population
⟨p2(ω)⟩t as a function of the exciting laser frequency
ω at fixed resonance frequency ω12 = ω2 − ω1. Because〈
sin2(x)

〉

x
= 1/2, one has

⟨p2(ω)⟩t = 1
2

V 2

V 2 + (ω − ω12)2 (1.139)

so that ⟨p2(ω)⟩ is proportional to the average absorbed
energy as a function of frequency ω, and one can inter-
pret this expression as the effective absorption lineshape
under intense coherent excitation. Indeed, Eq. (1.139)
corresponds to a Lorentzian lineshape with full width at
half-maximum 9FWHM = 2V . This effect is called power
broadening because V ∝

√
I (cf. Eqs. (1.82) and (1.96),

sometimes the term intensity broadening is used as well).
We have neglected here effects from spontaneous emis-
sion or collisions, as is obviously appropriate for the
timescales applicable to Fig. 1.9, but not necessarily al-
ways so.

We may finally conclude with an estimate of errors
arising when the conditions of the WF-QRA are not ful-
filled. The special case of the degenerate two-level prob-
lem has been solved exactly (Quack, 1978). In this case,
one has ω1 = ω2 and therefore D2 = ω2. The Rabi for-
mula Eq. (1.136) thus would give

pRabi
2 (t) = V 2

V 2 + ω2

[
sin

(
t

2

√
V 2 + ω2

)]2
. (1.140)

The exact solution (Quack, 1978) is

pex
2 (t) =

{
sin

[(
V

ω

)
sin (ωt)

]}2
. (1.141)

One can consider the limit |V | ≪ ω because this must
be assumed for the validity of the Rabi formula, and
considering this limit, one obtains

pRabi
2 (t) = V 2

ω2

[
sin

(
ωt

2

)]2
, (1.142)

pex
2 (t) = V 2

ω2 [sin (ωt)]2 . (1.143)

Thus the exact solution gives the same amplitude as the
Rabi formula, but the period differs by a factor of 2 and
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the short time limit for the population p2 differs by
a factor of 4. Of course, the second condition for the
validity of the WF-QRA is not satisfied, as one cannot
have |D| ≪ ω (rather by definition of the special case,
one has |D| = ω). If |D| ≪ ω, the Rabi formula gives
a very good approximation, as one can show numeri-
cally. We may note here that closed analytical expres-
sions for the solutions are available for the excitation of
the harmonic oscillator both with the exact treatment
(Eq. (1.93)) and within the WF-QRA (Eq. (1.113)), tak-
ing an infinite number of levels into account, which
may, perhaps, seem surprising. The derivation has been
given by Marquardt and Quack (1989) and leads to
a further estimate of the ranges of validity and uncer-
tainties introduced by the WF-QRA, both for popula-
tions and phases, in this case for a many-level system.
A very interesting simple situation for a two-level pop-
ulation transfer by a three-level mechanism which can
be treated with the QRA or Floquet approximation is
STIRAP (Stimulated Raman Adiabatic Passage) reviewed
recently by Bergmann et al. (2019).

1.7 CONCLUDING REMARKS
We measure time by motion and motion by
time (Aristotle, as cited and translated in
Quack (2004a,b)).
Time is what you read from your clock (“Zeit
ist das, was man an der Uhr abliest”, Einstein,
1922, as cited and translated in Quack (1999,
2004a,b)).

We shall conclude here with some general considera-
tions on time as defined by atomic and molecular clocks
and the important role of symmetries and approximate
or exact constants of the motion in molecular quan-
tum dynamics. We follow here Quack (2011a), see also
Quack and Hacker (2016) for the role of symmetries in
a broader context.

1.7.1 Time-Dependent Quantum Motion,
Spectroscopy and Atomic and
Molecular Clocks

Simple periodic quantum motions can be considered
to be the basis of atomic and molecular clocks as spe-
cial cases of general intramolecular dynamics. Indeed,
the general quantum dynamics of isolated molecules
are described by Eqs. (1.18) and (1.26) (or the for-
mally equivalent Eqs. (1.42) and (1.46)). The quanti-
ties ψk and Ek are obtained from the solution of the
stationary Schrödinger equation (1.26). The eigenfunc-
tions ψk depend only on space (and spin) coordinates,

FIG. 1.10 Explanation of the phase factor of the complex,
time-dependent wavefunction for the atomic and molecular
clock. (A) The phase factor is graphically depicted as an
arrow in the Gaussian plane (α is taken to be positive). For
positive times t , one obtains exp(−iα), the hand of the
clocklike phase factor turns in the clockwise direction, in the
sense of increasingly negative α. (B) and (C) These illustrate
the wavefunction ( and its complex conjugate (∗, which
both describe a symmetrically equivalent solution of the
Schrödinger equation, given time-reversal symmetry. The
picture also describes the corresponding orbits of planets
around the Sun, symmetric under time reversal. These can
move in a clockwise as well as counterclockwise direction,
providing acceptable solutions to the classical equations of
motion [after Quack, 1999 by permission].

and the energy eigenvalues Ek can be subject to spec-
troscopic observation by means of the Bohr condition
from Eq. (1.1), |"Ejk | = |Ek − Ej | = hνjk , with the
transition frequency νjk . If we consider just two levels
as equally populated, we obtain a periodic motion sim-
plified to some time-dependent probability function:

p(t) = |a + b exp(−2π i |"Ejk | t/h)|2. (1.144)

The time dependence of such an atomic or a molec-
ular clock is fully described by a time-dependent, com-
plex periodic phase factor exp(iα) represented graph-
ically in Fig. 1.10 in terms of the complex Gaussian
plane. The hand of the clock, figuratively speaking, is
given by the vector describing exp(iα) in the plane
that moves clockwise for positive time and counter-
clockwise for negative time. The period of the clock
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FIG. 1.11 Spectroscopic approach to intramolecular kinetics (see also Quack, 1997, 2003).

is given by one energy interval |"Ejk |. The modern
definition of the second is given by the separation
"Ejk of the two hyperfine levels in 133Cs (total an-
gular momenta F = 4 and F = 3 resulting from com-
bining nuclear spin I = 7/2 and electron spin s =
1/2) ("Ejk ≈ 0.306 633 1899 hc cm−1) such that 1 s =
9 192 631 770 τ exactly, with τ = h/"Ejk (see Stohner
and Quack, 2011).

Combining Eq. (1.144) for the atomic clock, and
the analysis of molecular spectra in terms of solu-
tions of the time-independent Schrödinger equation for
energies and wave functions and the solution of the
time-dependent Schrödinger equation in terms of these
wavefunctions and energies as well, this can be made
the basis of a spectroscopic approach to intramolecular
kinetics following the scheme in Fig. 1.11.

We have discussed elsewhere how this spectroscopic
approach can be used to obtain deep insights into
intramolecular processes with time resolution start-
ing from about 200 attoseconds (Quack, 1990, 2003,
2004a) (see also Albert et al., 2011 and Hippler et al.,
2011). Here, we shall furthermore address the relation
to the breaking and violation of symmetries and vari-
ous time scales for atomic and molecular primary pro-
cesses.

1.7.2 Hierarchy of Interactions and
Hierarchy of Timescales for the
Successive Breaking of Approximate
Dynamical Symmetries in
Intramolecular Primary Processes

The hierarchy of time scales for symmetry breaking can
be related to the size of contributions in the molecular
Hamiltonian. For instance, one might write the Hamil-
tonian in the following practical order of contributions
to a sum, which decrease (roughly) in the following or-
der (Quack, 1983):

Ĥ = T̂e + V̂nn + V̂ne + V̂ee

+T̂n

+ĤSO + ĤSS + Ĥrel

+Ĥhfs

+Ĥmol,rad + Ĥmol,environment

+Ĥweak + Ĥgravitational + · · ·

(1.145)

where T̂e and T̂n are the kinetic energy operators for
electrons and nuclei and V̂nn, V̂ne and V̂ee are nucleus–
nucleus, nucleus–electron, and electron–electron
Coulomb potentials. The contributions to the Hamilto-
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nian can be characterized by their underlying symmetry
groups. For instance, the initial terms in Eq. (1.145) all
show “parity symmetry”. Ĥweak would be, in the exam-
ple of parity violation, the relevant term contributing to
the dynamical symmetry breaking in an intramolecu-
lar process as discussed by Quack (1986, 2011a), on the
timescale of about 1 s; Ĥso, Ĥss are spin–orbit and spin–
spin, Ĥhfs is the hyperfine coupling and Ĥrel contains
other relativistic contributions to the Hamiltonian, with
obvious notation for the other terms. However, one
could also separate the molecular Hamiltonian into
other types of contributions, according to what one
considers a practical separation of the Hamiltonian, in
some abstract manner, say

Ĥ = Ĥ0 + Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4 + · · · . (1.146)

In such an abstract description, a large Ĥ0 may show
some (very high) symmetry, corresponding to a symme-
try group of high order; Ĥ1 may be smaller (in terms of
contributions to total energy), but might have a lower
symmetry (smaller subgroup of the symmetry group of
Ĥ0). Thus, considering Ĥ1, some of the symmetries of
Ĥ0 will be violated or broken, and so forth with Ĥ2,
Ĥ3, etc. The formal aspects of the time evolution with
more or less symmetry can be summarized by just a few
equations.

A dynamical variable represented by the opera-
tor Q̂ satisfies the Heisenberg equation of motion,
Eq. (1.14)).

If for a certain dynamical variable corresponding to
the operator Ĉ, one has the commutation relation (for
an isolated system, Ĥ being time-independent)

ĈĤ = Ĥ Ĉ. (1.147)

It follows with Eq. (1.16) that Û , being a function of
Ĥ , commutes with Ĉ as well,

Û Ĉ = ĈÛ , (1.148)

and therefore,

Ĉ(t) = Û † (t, t0) Ĉ(t0) Û(t, t0) = Û † (t, t0) Û(t, t0) Ĉ(t0)

= Ĉ(t0). (1.149)

Thus, in the Heisenberg representation, Ĉ does not
depend on time and is a “constant of the motion” or
constant of evolution. Considered as transformations
acting on Ĥ the Ĉ form a group, the symmetry group
of Ĥ (and Û). One can readily see (Quack, 1983) that
with the Liouville–von Neumann equation (1.37) for

the density operator P̂ or the corresponding density ma-
trix P the expectation value of Ĉ is constant,

⟨Ĉ(t)⟩ = Tr(P̂ Ĉ) = ⟨Ĉ(t0)⟩, (1.150)

and also if ((t) is an eigenfunction ζn(t) of Ĉ with
eigenvalue Cn, one has

⟨Ĉ(t)⟩ = ⟨ζn(t)|Ĉ|ζn(t)⟩ = Cn. (1.151)

The Cn are “good quantum numbers”, which do not
change in time with the evolution.

These equations can be applied in an analogous
fashion to each part of the Hamiltonian in Eq. (1.146),
i.e., successively to Ĥ0, Ĥ1, Ĥ2, . . ., etc. A constant of the
motion Ĉ0 of Ĥ0 will be strictly independent of time
at the level of description corresponding to Ĥ0, which
may be the largest contribution to the total energy. If
then a smaller contribution Ĥ1 has a lower symmetry,
some of the constants of motion Ĉ0 may show a time
dependence due to this symmetry breaking term. If Ĥ1
contributes only a small part to the total energy, the
time evolution of Ĉ0 will happen on correspondingly
longer time scales and so forth for even smaller contri-
butions due to Ĥ2, Ĥ3, Ĥ4, . . . .

Indeed, we have made this abstract approach a ba-
sis for understanding the separation of timescales in
intramolecular processes as derived from spectroscopy,
and Table 1.3 provides a summary of such results for
intramolecular kinetics.

For instance, if Ĥ0 is taken to correspond to a de-
scription of an N -atomic nonlinear molecule by 3N − 6
uncoupled harmonic oscillators and separable rotation,
all quantum numbers vk for the individual harmonic
oscillators correspond to conserved “good” quantum
numbers or constants of the motion.

As this is not a very good approximation, the anhar-
monic coupling terms (corresponding then to Ĥ1) are
quite large and will lead to symmetry breaking on a very
short timescale (depending on the case ranging from 10
fs to 10 ps as shown in Table 1.3 in the top group of pro-
cesses). One can then introduce a number of successive
coupling terms Ĥk that lead to further symmetry break-
ing and specific timescales for primary processes. The
case of parity violation appears in group 4 counted from
the top of Table 1.3 and the time evolution of parity
as a kinetic primary process is one of the current fron-
tiers in molecular quantum dynamics – interestingly on
long timescales (Quack, 1986, 1994, 2001, 2011a,b).
This example is also useful for illustrating another re-
lated concept arising for tunneling stereomutation in
chiral molecules, as discussed in Chapter 7 of this book
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TABLE 1.3
Timescales for intramolecular primary processes as successive symmetry breakinga.

Symmetric state Coupling and symmetry breaking Timescale
Conservation of separable
vibrational quantum numbers
(for harmonic oscillators of
normal modes)

Selective vibrational CH-stretch-bend-Fermi-Resonance in
R3CH (Marquardt et al., 1986; Marquardt and Quack, 1991;
Quack, 1990; Quack and Stohner, 1993; Quack, 1995b; Beil et
al., 1996a,b, 2000; Pochert et al., 2000)

10–200 fs

Ordinary nonselective anharmonic couplings in CF3R, "l
coupling in asymmetric R1R2R3CH (Quack, 1990; Pochert et
al., 2000; He et al., 2002; Albert et al., 2017)

500 fs to 10 ps

Uncoupled oscillators (nearly
adiabatically separable)

Adiabatically decoupled dynamics R–C≡C–H (Quack and
Stohner, 1993; Quack, 1995b; von Puttkamer et al., 1983;
Lehmann et al., 1994); (HF)2 (Quack and Suhm, 1998; von
Puttkamer and Quack, 1989; Quack, 2001, 2003); "l coupling
in C3v-symmetric R3CH (Luckhaus and Quack, 1993;
Kushnarenko et al., 2018)

10 ps to 1 ns

Separable
rotation-vibration-nuclear spin
states (conservation of nuclear
spin symmetry)

Violation of nuclear spin symmetry (nuclear
spin–rotation–vibration coupling) (Quack, 1977, 1983;
Chapovsky and Hermans, 1999)

1 ns to 1 s

Space inversion symmetry
Parity conservation P

Parity violation (Quack, 1986, 1989a; Bakasov et al., 1996,
1998; Bakasov and Quack, 1999; Berger and Quack, 2000;
Quack, 2002, 2006; Quack and Stohner, 2005; Prentner et al.,
2015; Dietiker et al., 2015)

1 ms to 1 ks

Time-reversal symmetry T T -violation in chiral and achiral molecules (Quack, 1997;
Luckhaus and Quack, 1993; Luckhaus et al., 1993)

Molecular timescale
not known

CPT symmetry Hypothetical CPT violation (Quack, 1994, 1995a, 2003, 2008) ∞ (?)

a After Quack et al., 2008, see also Quack, 1990, Marquardt and Quack, 2001, Quack, 1995a, 2001, 2003, 2007.

(Quack and Seyfang, 2020). In the case of a very high
barrier (tunneling splitting "E± ≈ 0), the ground state
of a chiral molecule is twofold degenerate because of
space inversion symmetry, but this degeneracy is lifted
by parity violation, resulting in a parity-violating energy
difference "pvE, which can be interpreted as the “split-
ting” of the degenerate levels by a symmetry-violating
contribution Ĥpv arising from Hweak to the Hamilto-
nian. The smallness of the symmetry-violating splitting
of the degeneracy is directly related to the long timescale
(1 ms to 1 ks, depending on the molecular example)
for the dynamical, time-dependent symmetry breaking,
simply by the equation for the general period of mo-
tion "τ :

"τ = h/"E (1.152)

which can be called the elementary timescale for the
symmetry breaking. The ordering of the Hamiltonian
in Eq. (1.146) by contributions from terms of differ-
ent magnitude and different symmetry has one fur-

ther aspect: It allows one to determine small contribu-
tions separately from large contributions, like weighing
a captain directly and not as a difference of weights
of ship with captain and ship without the captain.
This is important in experimental and theoretical ap-
proaches.

The examples of Table 1.3 are largely drawn from the
work of the Zurich group with emphasis on the con-
nection between symmetries, approximate constants of
the motion and time scales for intramolecular processes
arising from various symmetry breakings. Of course, if
one just considers time scales in kinetics, there is an
enormous body of work from worldwide efforts. Partic-
ularly noteworthy for the remainder of the book is the
“short time frontier”, which would continue the table
at the top end toward the attosecond range and shorter.
There is considerable early history (Manz and Wöste,
1995; Quack, 2003, 2014c) and a nice personal account
of the history of short time quantum dynamical pro-
cesses from the early days of electronic relaxation in
molecules to cluster Coulomb explosion and table top
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nuclear fusion ending with the question “How fast is
ultrafast?” can be found in Jortner (2003). The various
chapters in the present book provide beautiful examples
of current work by these authors in the field addressing
and in part also answering such questions.

A brief note is also useful concerning the role of rela-
tivistic effects. As is well known, these are important for
the dynamics of electron motion, whenever the heav-
ier elements are involved in the molecules considered.
These effects can be calculated by relativistic quantum
chemistry (Reiher and Wolf, 2009; Mastalerz and Rei-
her, 2011) and can lead, indeed, to dramatic changes
in the effective Born–Oppenheimer potential hypersur-
faces for molecular quantum dynamics, for example.
Once these effects are included, the motion of atoms
and molecules can be computed and understood in
very much the same way using the Schrödinger equa-
tion as discussed for nonrelativistic potentials. If the
molecules move at relativistic speeds, one has to con-
sider the changes in the definition of time which is then
to be measured by an atomic clock moving at relativistic
speed. Indeed, one then has the well understood (and,
in fact, experimentally observed) relativistic effects, such
as an atomic and molecular “twin paradox” due to Ein-
stein (1922). Further considerations arise when consid-
ering violations of time reversal symmetry and possibly
a hypothetical violation of CPT symmetry, and we refer
to Quack (2011a,b) where one can also find a discus-
sion of the “42 open problems”, some of which are
related to the measurement and definition of time, time
reversal symmetry, CPT symmetry and time-dependent
entropy in statistical mechanics and molecular quan-
tum dynamics. The investigation of possible violations
of CPT symmetry is clearly one of the frontiers of fun-
damental physics (Quack, 1994, 2003; Gabrielse, 2016;
Ahmadi et al., 2020) and cosmology (Boyle et al., 2018).
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